

PERCEPTIONS AND CHALLENGES OF AI-DRIVEN CODE REVIEWS: A QUALITATIVE
EXPLORATION OF DEVELOPER EXPERIENCES

By

W. SEBASTIAN CASTALDI

B.S., Universidad Bicentenaria de Aragua, 1997

M.S., University of South Florida, 2006

A Research Paper Submitted to the School of Computing Faculty of

Middle Georgia State University in

Partial Fulfillment of the Requirements for the Degree

DOCTOR OF SCIENCE IN INFORMATION TECHNOLOGY

MACON, GEORGIA

2025

Perceptions and Challenges of AI-Driven Code Reviews: A
Qualitative Exploration of Developer Experiences

W. Sebastian Castaldi, Middle Georgia State University, USA, sebastian.castaldi@mga.edu

Abstract

AI-driven code review tools represent transformative advances in software development, improving
efficiency, productivity, and accuracy in code reviews. Despite these potential benefits, concerns about
trust, reliability, and contextual comprehension persist, limiting their widespread adoption. This qualitative
study explores software developers' perceptions and challenges associated with AI-driven code review
tools. Through semi-structured and thematic analysis involving software developers, technical leads, and
architects, the study identifies central themes, including trust in AI-generated recommendations, impacts
on developer productivity, ethical considerations, and contextual awareness. While participants
acknowledge the efficiency gains and educational value provided by AI tools, skepticism remains regarding
the tools' ability to interpret complex business logic and domain-specific scenarios. Participants advocate
for enhancements in AI-driven tools, highlighting the need for improved contextual awareness,
transparency, ethical integration, and seamless workflow integration. This research adds valuable empirical
insights to ongoing discussions in software engineering literature, emphasizing AI-driven code reviews as
complementary tools that augment human expertise in software development processes.

Keywords: AI-driven code review, trust in AI, developer perceptions, developer experiences.

Introduction

AI-driven code review tools have emerged as promising innovations designed to improve the efficiency
and effectiveness of software development processes. According to Vijayvergiya et al. (2024), modern code
review is a collaborative practice where peers review code contributions before they are integrated into the
version control system, ensuring compliance with established best practices. Manual code reviews
effectively identify defects, enforce coding standards, and facilitate knowledge sharing among developers
(Tufano et al., 2021; Rasheed et al., 2024). However, with increasing software complexity and larger
projects, maintaining thorough and frequent manual reviews becomes increasingly challenging. To address
this challenge, AI-driven tools have been developed to automate various aspects of code review, such as
detecting code smells, recommending refactoring, and predicting potential errors based on historical data
(Almeida et al., 2024; Gerede & Mazan, 2018).

Despite their potential, adoption of these AI-driven code review tools remains slow. Developers express
skepticism concerning the reliability, contextual accuracy, and ethical considerations associated with AI-
generated feedback (Bird et al., 2023; Ernst & Bavota, 2022). A recurring concern is whether AI can
effectively comprehend and handle the nuances of business logic and project-specific contexts, which are
critical to meaningful code assessments beyond superficial issues like syntax errors (Bird et al., 2023).
Addressing these perceptions and challenges is essential to enhancing trust and integration of AI-driven
tools into development workflows.

This qualitative study investigates software developers' perceptions and challenges associated with AI-
driven code review tools. Through semi-structured interviews and thematic analysis, this research explores

developers' experiences to identify key factors influencing their trust, acceptance, and integration of AI
technologies in established development workflows. This investigation provides valuable insights into the
strengths, limitations, and potential roles of AI-driven code review tools, emphasizing their capacity as
complementary aids rather than replacements for human reviewers. This study contributes to enhance the
future development, adoption, and effective use of AI in software engineering contexts by addressing the
following research question:

RQ1: What are the perceptions and challenges experienced by developers when using AI-driven code
review tools?

Review of the Literature

Modern Code Review

Modern Code Review (MCR) plays a crucial role in maintaining and enhancing the security and quality of
software. The OWASP Code Review Guide (OWASP Foundation, Inc., 2017) provides a comprehensive
framework for secure code reviews, emphasizing their integration into the software development life cycle
(SDLC) to identify and mitigate vulnerabilities early, thus enhancing application security. The guide
advocates for code reviews to promote a culture of security awareness and responsibility among
development teams, facilitating knowledge sharing and skill development within organizations, leading to
more secure software products. Furthermore, Khleel and Nehéz (2020) explore the role of code reviews,
contrasting formal inspections with modern code reviews (MCR). While formal inspections are thorough,
their cost and rigidity make them less suitable for agile environments. In contrast, supported by tools, MCR
offers a flexible, collaborative approach that improves review efficiency and software quality. The study
underscores optimizing code review processes by considering technical and non-technical factors to
enhance collaboration and learning.

Badampudi et al. (2023) also provide a comprehensive survey of MCR practices, proposing a research
agenda to align academic research with industry practices, thereby enhancing the effectiveness and
efficiency of MCR processes. The authors emphasize that MCR practices are essential for improving code
quality, reducing post-delivery defects, and facilitating knowledge sharing among developers. Furthermore,
Doğan and Tüzün (2022) identify prevalent code review smells in open-source software (OSS) projects,
which impact software quality and development efficiency. Addressing these issues can reduce technical
debt and improve code review practices, software quality, and collaboration. Finally, Afzali et al. (2023)
highlight vulnerabilities in modern web-based code review systems due to inadequate integrity
mechanisms, stressing the importance of code reviews in ensuring software quality and security.

Ethical Considerations

While the above research demonstrates substantial advancements in modern code review practices, ethical
considerations continue to represent significant challenges that require further investigation. Trust,
reliability, and contextual accuracy in AI-driven development environments (AIDEs) is crucial for their
effective and ethical integration into software development. Ernst and Bavota (2022) discuss the emergence
of AIDEs and their transformative potential in software engineering, exemplified by tools like GitHub
Copilot, which use large language models such as Codex to automate routine coding tasks and enhance
developer productivity through real-time code suggestions. Complementing this discussion, Bird et al.
(2023) underscore the necessity of trust in AI-generated code and ethical considerations to adopt these tools

effectively. Their research calls for future studies to enhance the reliability, contextual accuracy, and ethical
implications of AI-powered programming tools, ensuring they complement developers' workflows and
contribute positively to the software development process. Developers must balance the benefits of AI
suggestions with potential risks, such as reduced code comprehension and increased security vulnerabilities.
The integration of AI in software development underscores the need for new skills, particularly in code
review and validation, and understanding the dynamics between developers and AI tools is essential for
optimizing their use in real-world settings.

Integrating Artificial Intelligence (AI)

Recent research has highlighted the transformative potential of machine learning and AI in enhancing the
efficiency and effectiveness of code review processes. Gerede and Mazan (2018) investigate the potential
of predicting whether a source code change proposal will require revisions during a review. Using machine
learning, the researchers achieved a 94.59% accuracy rate in predicting the necessity of revisions, with
Random Forest algorithms emerging as the most effective method. This study highlights the potential of
predictive models to streamline the code review process, reduce iteration counts, and improve developer
satisfaction by providing actionable ideas before reviews begin.

Building on these advancements, Pejic et al. (2023) explore enhancing pull request recommendation
systems, particularly in large-scale repositories with extensive developer involvement. The findings
highlight the importance of optimizing reviewer recommendations to manage large-scale repositories
effectively, thus supporting better management of reviewer workloads and improving review process
efficiency. Future research should explore additional basic filters and refine the technique for broader
applicability, providing a robust foundation for optimizing reviewer recommendation systems in complex
environments (Pejic et al., 2023). Additionally, Turzo et al. (2023) present a novel approach to enhancing
code review (CR) analytics through the automated classification of CR comments. The authors developed
a deep neural network (DNN)-based model that leverages code context, comment text, and code metrics to
classify CR comments into five high-level categories. This model can prioritize high-priority feedback,
improving the efficiency and effectiveness of CR tasks. In a related context, Yin et al. (2023) address the
challenges posed by the increasing volume and complexity of the code review process by proposing an
automated code review model that enhances learning through the combination of program structure and
code sequence. Based on the pre-trained CodeBERT architecture, the model employs a program
dependency graph serialization (PDG2Seq) algorithm to convert the program dependency graph into a
unique graph code sequence, retaining both program structure and semantic information. The findings
highlight the importance of preserving structural and semantic code information in analysis models and
contribute to advancing automated tools for managing complex software development processes (Yin et
al., 2023).

Furthermore, Zydroń and Protasiewicz (2023) explore the automation of code review processes to improve
efficiency and accuracy in large-scale software development projects. They highlight the challenge of
manually assigning reviewers to pull requests and propose automated techniques utilizing machine learning,
heuristic-based algorithms, and social network analysis to recommend suitable reviewers. The results
indicate that the proposed automated review system can significantly enhance efficiency and accuracy in
code review processes. Integrating natural language processing (NLP) and machine learning techniques,
such as pre-trained models such as ChatGPT4, enhances review annotation and accuracy. These findings
suggest that automated review systems can increase transparency and accountability, positively impacting
project outcomes (Zydroń & Protasiewicz, 2023).

In a comprehensive study, Almeida et al. (2024) explore the application of Artificial Intelligence (AI) in
code review processes to enhance the quality and efficiency of software development. Their research
demonstrated significant improvements in review efficiency and effectiveness. AICodeReview, a tool
developed by the authors, reduced review time, detected more code smells, and facilitated more effective
refactoring compared to manual reviews. These findings support the continued development and integration
of AI-driven tools in software development workflows, emphasizing the importance of combining
automated tools with human expertise for optimal outcomes in code reviews. Integrating AI-based
techniques in code review processes offers significant potential for improving overall software quality and
development efficiency (Almeida et al., 2024).

Finally, Baumgartner et al. (2024) present an AI-driven pipeline designed to address data clumps in
software repositories. Data clumps, or variables frequently appearing together, indicate poor code structure
and pose maintenance challenges. The study shows that by integrating LLMs like ChatGPT, the pipeline
provides semantic insights that improve refactoring accuracy, address maintenance challenges associated
with data clumps, and reduce technical debt. The automated refactoring process enhances overall code
quality and maintainability. The study concludes that combining AI-driven techniques with human
expertise results in more effective refactoring processes, highlighting the potential of AI in transforming
software maintenance practices (Baumgartner et al., 2024).

Human Oversight

The evolving landscape of code review processes highlights the interaction between automated tools and
human oversight. Whether through peer reviews in distributed environments, automated task integration,
or the use of advanced AI models, the emphasis remains on enhancing efficiency and effectiveness while
maintaining the critical role of human expertise. Dos Santos and Nunes (2018) investigate the effectiveness
of peer code review in distributed software development (DSD) using objective data from code repositories
and subjective data from developer surveys. The study emphasizes the importance of considering technical
and non-technical factors in DSD. While automated tools enhance the review process, they cannot replace
the need for active human participation. The balance between review thoroughness and efficiency is critical,
especially in DSD contexts. By combining empirical data and subjective insights, the study provides a
comprehensive understanding of code review effectiveness, highlighting the nuanced requirements of peer
code reviews in distributed environments (Dos Santos & Nunes, 2018). In a related study, Baumgartner et
al. (2024) demonstrate how the automated refactoring process enhances overall code quality and
maintainability. Their findings underscore that combining AI-driven techniques with human expertise
results in more effective refactoring processes, highlighting AI's potential to transform software
maintenance practices (Baumgartner et al., 2024).

The literature illustrates significant advances in software quality facilitated by Modern Code Review
(MCR) and AI-driven tools. According to Keary (2017), integrating structured security-focused code
review practices into the software development life cycle (SDLC) enables early vulnerability detection,
enhances software security, and fosters collaborative knowledge sharing among development teams. Khleel
and Nehéz (2020) highlight MCR's adaptability for agile environments compared to traditional inspections.
AI tools like AICodeReview and GitHub Copilot further enhance review efficiency and developer learning
but raise ethical concerns around transparency and trust (Ernst & Bavota, 2022; Bird et al., 2023). Human
oversight remains critical, particularly in complex and distributed contexts (Dos Santos & Nunes, 2018;

Baumgartner et al., 2024). While AI-driven code reviews have transformative potential, their success
depends on ethical integration and a balanced partnership with human expertise.

Furthermore, Turzo (2023) proposes improving modern code reviews (MCR) effectiveness by automating
tasks, such as reviewer selection and bug identification, to reduce time and resources spent. Integrating
these models with static analysis tools can identify and suggest potential solutions for code defects that
might otherwise be missed. This approach aims to streamline code reviews, making them more efficient
while relying on human oversight to ensure the quality of the automated tools. Furthermore, Kotsiantis et
al. (2024) explore AI-assisted programming, focusing on utilizing code embeddings and transformers to
enhance software development tasks. These technologies reduce manual coding efforts and minimize
errors, making software development more efficient. Kotsiantis et al.(2024) highlights the importance of
addressing the limitations and challenges of current AI technologies. It emphasizes the need for
collaboration between AI researchers and software developers to advance AI-assisted programming,
suggesting that these tools will be widely adopted in integrated development environments (IDEs), playing
a crucial role in the evolution of software development.

Methodology

This study focuses on qualitative research design to investigate the perceptions and challenges experienced
by software developers using AI-driven code review tools. Specifically, thematic analysis was selected due
to their ability to capture complex, nuanced perceptions and experiences that quantitative methods may
overlook (Creswell, 2013).

Instrument

The instrument consisted of a semi-structured interview guide with open-ended questions organized into
six sections. Section one focused on background and experience, section two explored perceptions, section
three addressed challenges, section four gathered suggestions for improvement, section five examined
future and ethical considerations, and section six included closing questions. This approach enabled in-
depth research and proved effective in detailing the experiences of participants and understanding the
context in which these experiences occurred (Guest et al., 2006).

Sampling

Semi-structured interviews were conducted with 10 participants, including software developers, team leads,
and software architects who used AI-driven code review tools for at least six months. The sample size is
based on data saturation, which occurs when no new themes or insights emerge from additional data
collection (Guest et al., 2006). This approach ensures rich and meaningful data collection while preserving
research efficiency.

Data Collection

The data was analyzed using thematic analysis, a method for identifying, analyzing, and reporting patterns
in qualitative data (Creswell, 2013). The interviews were transcribed and the initial codes were generated
systematically throughout the dataset, reviewed and categorized into themes. The themes were then refined
and validated to reflect the essence of the data in relation to the research questions. A thematic map was
also created to illustrate the relationship between themes (Creswell, 2013).

Results

In regard to the research question, this study conducted a qualitative analysis of interview data from 10
participants, including software developers, team leads, and software architects. The analysis performed
using Quirkos, a qualitative data analysis software, allowed for systematic coding, organization, and
visualization of insights, ensuring a comprehensive examination of developers' perceptions and challenges
with AI-driven code review tools. The results revealed six key themes: efficiency, learning, trust,
challenges, collaboration, and future expectations, providing a comprehensive understanding of how these
tools affect software development workflows.

Figure 1. Word Cloud

Figure 2. Categories

Role

 50% Senior Developer
 20% Technical Lead
 10% Director
 20% Developer

Age

 40% 20-30
 20% 30-40
 20% 40-50
 20% 50-60

Gender

 90% Male
 10% Female

Development Experience (years)

 50% 5-10
 30% 10-20
 20% 20+

AI-Driven Code Review Experience (years)

 30% 0-1
 40% 1-2
 20% 2-3
 10% 3+

Table 1. Themes

Title Parent Total Codes
Learning and Knowledge Impact on Developer Skills 2
Educational Tool Impact on Developer Skills 7
Challenges Trust 3
Hallucinations Skepticism 4
Context Awareness Trust 5
Code Consistency Skepticism 6
Data Privacy Issues Skepticism 3
Bias Ethics and Security Concerns 1
Incorrect or Irrelevant Feedback Skepticism 14
Impact on Developer Skills 4
Trust 22
AI vs. Traditional Code Reviews Trust 6
Efficiency and Speed Productivity 7
Potential to Evolve Future Expectations and Improvements 15
Transparency Skepticism 6
Ethics and Security Concerns 11
Human-AI Collaboration Ethics and Security Concerns 14
Skepticism Trust 13
Reliability in Code Review Trust 14
Lack of Context Understanding Skepticism 17
Future Expectations and Improvements 20
Productivity 19
Reduce Workload Productivity 12
Integration in Workflows Productivity 5
Total Codes 230
Total Quirks 24

Efficiency and Productivity

Participants highlighted that AI-driven tools reduced manual code review time and allowed focus on
complex tasks, with many noting rapid feedback as a key benefit. The thoroughness of AI in detecting
errors and suggesting improvements was a recurring theme, boosting productivity. Participants also noted
that AI tools minimized human error, ensured consistency, and enabled faster development cycle iterations.
Several participants emphasized that time saved with AI tools allowed them to allocate more effort to
innovation, demonstrating the perceived value of these tools in improving workflow efficiency.

Learning and Knowledge Enhancement

Participants expressed that AI-driven code reviews reinforced coding principles and provided educational
value through detailed explanations. This theme was prevalent, with many participants recognizing AI tools
as ongoing learning aids that helped them adopt best practices. Additionally, participants highlighted that

AI tools exposed them to alternative coding methods and encouraged them to stay updated with evolving
standards. The guidance provided by AI tools was seen as particularly valuable for junior developers,
providing mentoring support and accelerating their learning curve.

Trust and Reliability

While many participants acknowledged AI’s reliability in detecting errors, they also expressed skepticism
regarding its ability to understand complex business logic and project-specific contexts. This skepticism
was a shared concern among several developers, indicating a pattern of cautious reliance on AI feedback.
Some participants noted that while AI tools were reliable for syntax and structural checks, the feedback
often lacked awareness of broader project objectives, leading developers to selectively adopt AI
recommendations. The importance of human oversight was repeatedly emphasized, with developers
advocating for a balanced approach where AI serves as an assistant rather than a replacement.

Challenges and Limitations

A notable challenge identified by participants was the AI’s struggle with business logic, leading to improper
suggestions. Contradictory feedback from AI tools created additional workload, and concerns about training
data quality and ethical implications were often raised, highlighting widespread concerns. Developers
reported that AI tools sometimes generated false positives, requiring careful review and offsetting some
time-saving benefits. Ethical concerns included data privacy, bias in AI training models, and potential over-
reliance on automated systems, which participants believed could undermine critical thinking and
collaborative code review practices.

Collaboration and Workflow Integration

Participants had mixed experiences with AI tools. While some valued quick feedback that reduced reliance
on human reviewers, others felt AI hindered peer discussions. A recurring suggestion was improving AI’s
contextual awareness for better workflow integration. Participants also noted that AI tools could disrupt
established review processes by introducing conflicting suggestions that required mediation. However,
many acknowledged that AI tools streamlined repetitive tasks when integrated effectively, allowing human
reviewers to focus on high-impact code assessments, thus enhancing team efficiency.

Future Expectations

Participants expected AI tools to continue as complementary aids to human reviewers, with hopes for
improvements that would reduce manual intervention. Several participants highlighted continuous training
and adaptation of AI tools as essential, underlining the need for development. Participants expressed
optimism about the future of AI-driven code review tools, such as improved contextual understanding,
adaptive learning from project-specific code bases, and enhanced security features. The need for
customizable AI-driven code review tools tailored to specific project needs was also stressed, with
participants hoping for more transparent and explainable AI operations to build trust and improve adoption.

Discussion

The results of this qualitative study contribute to the existing literature by highlighting both positive
perceptions and ongoing challenges faced by developers when using AI-driven code review tools.

Consistent with prior research, the participants acknowledged multiple advantages associated with
integrating AI-driven tools, including enhanced efficiency, productivity, and opportunities for skill
enhancement (Almeida et al., 2024; Rasheed et al., 2024; Tufano et al., 2021). Participants reported that
AI-driven tools effectively reduced their workload by quickly identifying errors, suggesting relevant
refactoring options, and automating repetitive tasks. These observations align closely with Almeida et al.
(2024), who found that AI tools significantly reduced the time required for code reviews while improving
overall code quality. Similarly, Gerede and Mazan (2018) demonstrated that AI-based predictive models
increased review efficiency and improved developer satisfaction by proactively identifying code issues
requiring review.

However, despite these perceived benefits, the study findings underscore persistent skepticism among
developers, particularly regarding AI's limitations in handling complex business logic and domain-specific
contexts. Participants expressed doubts about the AI tools ability to interpret deeper layers of contextual
information, echoing concerns documented by Bird et al. (2023), who noted developers' reluctance to fully
trust AI-generated suggestions due to perceived inadequacies in understanding intricate project-specific
details. Ernst and Bavota (2022) further emphasized the importance of trust and reliability in AI-driven
development environments, advocating that human oversight remains essential, especially when handling
complex or sensitive software tasks.

Moreover, ethical considerations emerged as a significant dimension shaping developer perceptions.
Developers expressed concerns about data privacy, inherent biases in AI training datasets, and the risk of
excessive reliance on automation, which could undermine the critical thinking and collaborative practices
of developers. These ethical challenges mirror concerns discussed extensively in prior studies, including
Baumgartner et al. (2024), who underscored the necessity of transparent and explainable AI
recommendations to mitigate bias and promote accountability. The developers' apprehensions around
ethical issues, particularly data privacy and bias, align with broader ethical discourses highlighted in recent
literature (Bird et al., 2023; Ernst & Bavota, 2022).

This study also reveals practical implications for improving AI-driven code review tools. Participants called
for improvements in the contextual awareness and accuracy of AI tools, advocating for increased
customization capabilities, transparency in recommendation processes, and seamless workflow integration.
These findings are consistent with recommendations from the OWASP Code Review Guide (Keary, 2017),
which emphasizes the integration of security best practices and transparency into software development
processes. Furthermore, these findings align with studies by Pejic et al. (2023) and Zydroń and Protasiewicz
(2023), which advocate for more contextually aware and customizable AI tools capable of adapting
dynamically to specific project environments to optimize reviewer effectiveness and enhance overall
software quality.

Participants also expressed future expectations for AI-driven code review tools, highlighting the need for
continuous improvement in adaptive learning capabilities, better contextual awareness, and more robust
integration into existing development workflows. These expectations resonate with suggestions from
Almeida et al. (2024) and Rasheed et al. (2024), who have recommended ongoing refinement of AI's
capabilities through deeper contextual learning and integration into established human-driven processes.

In summary, while the benefits of AI-driven code review tools in software engineering practices are
recognized, there are still significant concerns about contextual understanding, trustworthiness, and ethical
considerations. The current study reinforces the need for AI tools to evolve towards greater transparency,

contextual sensitivity, and seamless integration into existing workflows, achieving a balanced partnership
between automation and human expertise.

Conclusion

This qualitative research explored the perceptions and challenges of software developers using AI-driven
code review tools. The literature review highlighted existing knowledge regarding AI's ability to improve
code review efficiency, productivity, and skills while underscoring prevalent concerns regarding trust,
contextual understanding, and ethical implications (Almeida et al., 2024; Bird et al., 2023; Ernst & Bavota,
2022; Tufano et al., 2021).

Semi-structured interviews were conducted with software developers, technical leads and solution
architects using thematic analysis. The thematic analysis revealed six key themes: efficiency and
productivity, learning and knowledge enhancement, trust and reliability, challenges and limitations,
collaboration and workflow integration, and future expectations. Participants acknowledged that AI-driven
tools reduce repetitive tasks, increased productivity, and improved continuous learning. However,
skepticism persisted regarding the tools' limitations in contextual understanding, ethical concerns, and
reliability, underscoring the continued necessity of human oversight.

The discussion aligned these findings with previous studies, highlighting persistent challenges related to
trust, contextual understanding, and ethical considerations when integrating AI tools in software
development (Bird et al., 2023; Ernst & Bavota, 2022). Consistent with research advocating for human
oversight in AI-driven software engineering practices (Baumgartner et al., 2024), this study underscores
the necessity of balanced human-AI collaboration rather than complete automation.

In summary, this research provides evidence supporting a hybrid model, emphasizing the complementary
role of AI-driven code review tools and human expertise. Future research should address AI limitations,
especially contextual understanding and ethical transparency, aligning technological advances with ethical
standards in software engineering.

References

Afzali, H., Torres-Arias, S., Curtmola, R., & Cappos, J. (2023). Towards verifiable web-based code review

systems. Journal of Computer Security, 31(2), 153–184. https://doi.org/10.3233/JCS-210098

Almeida, Y., Albuquerque, D., Filho, E. D., Muniz, F., de Farias Santos, K., Perkusich, M., Almeida, H.,

& Perkusich, A. (2024). AICodeReview: Advancing code quality with AI-enhanced reviews.
SoftwareX, 26, 101677. https://doi.org/10.1016/j.softx.2024.101677

Badampudi, D., Unterkalmsteiner, M., & Britto, R. (2023). Modern Code Reviews—Survey of Literature

and Practice. ACM Trans. Softw. Eng. Methodol., 32(4), 107:1-107:61.
https://doi.org/10.1145/3585004

Baumgartner, N., Iyenghar, P., Schoemaker, T., & Pulvermüller, E. (2024). AI-Driven Refactoring: A

Pipeline for Identifying and Correcting Data Clumps in Git Repositories. Electronics (2079-9292),
13(9), 1644. https://doi.org/10.3390/electronics13091644

https://doi.org/10.3233/JCS-210098
https://doi.org/10.1016/j.softx.2024.101677
https://doi.org/10.1145/3585004
https://doi.org/10.3390/electronics13091644

Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk, T., & Gazit, I. (2023).
Taking Flight with Copilot: Early insights and opportunities of AI-powered pair-programming
tools. Queue, 20(6), Pages 10:35-Pages 10:57. https://doi.org/10.1145/3582083

Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd

ed). SAGE Publications.

Doğan, E., & Tüzün, E. (2022). Towards a taxonomy of code review smells. Information and Software

Technology, 142, 106737. https://doi.org/10.1016/j.infsof.2021.106737

Dos Santos, E. W., & Nunes, I. (2018). Investigating the effectiveness of peer code review in distributed

software development based on objective and subjective data. Journal of Software Engineering
Research and Development, 6(1), 14. https://doi.org/10.1186/s40411-018-0058-0

Ernst, N. A., & Bavota, G. (2022). AI-Driven Development Is Here: Should You Worry? IEEE Software,

39(2), 106–110. https://doi.org/10.1109/MS.2021.3133805

Gerede, Ç. E., & Mazan, Z. (2018). Will it pass? Predicting the outcome of a source code review. Turkish

Journal of Electrical Engineering & Computer Sciences, 26(3), 1343–1353.
https://doi.org/10.3906/elk-1707-173

Guest, G., Bunce, A., & Johnson, L. (2006). How Many Interviews Are Enough?: An Experiment with

Data Saturation and Variability. Field Methods, 18(1), 59–82.
https://doi.org/10.1177/1525822X05279903

Keary, E. (2017). OWASP Code Review Guide. OWASP Code Review Guide. https://owasp.org/www-

project-code-review-guide/

Khleel, N. A. A., & Nehéz, K. (2020). Tools, Processes and Factors Influencing of Code Review.

Multidiszciplinaris Tudomanyok, 10(3), 277–284. https://doi.org/10.35925/j.multi.2020.3.33

Kotsiantis, S., Verykios, V., & Tzagarakis, M. (2024). AI-Assisted Programming Tasks Using Code

Embeddings and Transformers. Electronics (2079-9292), 13(4), 767.
https://doi.org/10.3390/electronics13040767

Pejic, N., Radivojevic, Z., & Cvetanovic, M. (2023). Helping Pull Request Reviewer Recommendation

Systems to Focus. IEEE Access, 11, 71013–71025.
https://doi.org/10.1109/ACCESS.2023.3292056

Rasheed, Z., Sami, M. A., Waseem, M., Kemell, K.-K., Wang, X., Nguyen, A., Systä, K., & Abrahamsson,

P. (2024). AI-powered Code Review with LLMs: Early Results. arXiv.Org.
https://doi.org/arXiv:2404.18496v1

Tufano, R., Pascarella, L., Tufano, M., Poshyvanyk, D., & Bavota, G. (2021). Towards Automating Code

Review Activities (No. arXiv:2101.02518). arXiv. https://doi.org/10.48550/arXiv.2101.02518

https://doi.org/10.1145/3582083
https://doi.org/10.1016/j.infsof.2021.106737
https://doi.org/10.1186/s40411-018-0058-0
https://doi.org/10.1109/MS.2021.3133805
https://doi.org/10.3906/elk-1707-173
https://doi.org/10.1177/1525822X05279903
https://owasp.org/www-project-code-review-guide/
https://owasp.org/www-project-code-review-guide/
https://doi.org/10.35925/j.multi.2020.3.33
https://doi.org/10.3390/electronics13040767
https://doi.org/10.1109/ACCESS.2023.3292056
https://doi.org/arXiv:2404.18496v1
https://doi.org/10.48550/arXiv.2101.02518

Turzo, A. K. (2023). Towards Improving Code Review Effectiveness Through Task Automation.
Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering,
1–5. https://doi.org/10.1145/3551349.3559565

Turzo, A. K., Faysal, F., Poddar, O., Sarker, J., Iqbal, A., & Bosu, A. (2023). Towards Automated

Classification of Code Review Feedback to Support Analytics (No. arXiv:2307.03852). arXiv.
https://doi.org/10.1109/esem56168.2023.10304851

Vijayvergiya, M., Salawa, M., Budiselić, I., Zheng, D., Lamblin, P., Ivanković, M., Carin, J., Lewko, M.,

Andonov, J., Petrović, G., Tarlow, D., Maniatis, P., & Just, R. (2024). AI-Assisted Assessment of
Coding Practices in Modern Code Review. Proceedings of the 1st ACM International Conference
on AI-Powered Software, 85–93. https://doi.org/10.1145/3664646.3665664

Yin, Y., Zhao, Y., Sun, Y., & Chen, C. (2023). Automatic Code Review by Learning the Structure

Information of Code Graph. Sensors (14248220), 23(5), 2551. https://doi.org/10.3390/s23052551

Zydroń, P. W., & Protasiewicz, J. (2023). Enhancing Code Review Efficiency – Automated Pull Request

Evaluation using Natural Language Processing and Machine Learning. Advances in Sciences and
Technology, 17(4), 162–167. https://doi.org/10.12913/22998624/169576

https://doi.org/10.1145/3551349.3559565
https://doi.org/10.1109/esem56168.2023.10304851
https://doi.org/10.1145/3664646.3665664
https://doi.org/10.3390/s23052551
https://doi.org/10.12913/22998624/169576

	Abstract
	Introduction
	Review of the Literature
	Modern Code Review
	Ethical Considerations
	Integrating Artificial Intelligence (AI)
	Human Oversight

	Methodology
	Instrument
	Sampling
	Data Collection

	Results
	Figure 1. Word Cloud
	Figure 2. Categories
	Role
	Age
	Gender
	Development Experience (years)
	AI-Driven Code Review Experience (years)

	Table 1. Themes
	Efficiency and Productivity
	Learning and Knowledge Enhancement
	Trust and Reliability
	Challenges and Limitations
	Collaboration and Workflow Integration
	Future Expectations

	Discussion
	Conclusion
	References

