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Abstract 
 
AI-driven code review tools represent transformative advances in software development, improving 
efficiency, productivity, and accuracy in code reviews. Despite these potential benefits, concerns about 
trust, reliability, and contextual comprehension persist, limiting their widespread adoption. This qualitative 
study explores software developers' perceptions and challenges associated with AI-driven code review 
tools. Through semi-structured and thematic analysis involving software developers, technical leads, and 
architects, the study identifies central themes, including trust in AI-generated recommendations, impacts 
on developer productivity, ethical considerations, and contextual awareness. While participants 
acknowledge the efficiency gains and educational value provided by AI tools, skepticism remains regarding 
the tools' ability to interpret complex business logic and domain-specific scenarios. Participants advocate 
for enhancements in AI-driven tools, highlighting the need for improved contextual awareness, 
transparency, ethical integration, and seamless workflow integration. This research adds valuable empirical 
insights to ongoing discussions in software engineering literature, emphasizing AI-driven code reviews as 
complementary tools that augment human expertise in software development processes. 
 
Keywords: AI-driven code review, trust in AI, developer perceptions, developer experiences. 
 

Introduction 
 
AI-driven code review tools have emerged as promising innovations designed to improve the efficiency 
and effectiveness of software development processes. According to Vijayvergiya et al. (2024), modern code 
review is a collaborative practice where peers review code contributions before they are integrated into the 
version control system, ensuring compliance with established best practices. Manual code reviews 
effectively identify defects, enforce coding standards, and facilitate knowledge sharing among developers 
(Tufano et al., 2021; Rasheed et al., 2024). However, with increasing software complexity and larger 
projects, maintaining thorough and frequent manual reviews becomes increasingly challenging. To address 
this challenge, AI-driven tools have been developed to automate various aspects of code review, such as 
detecting code smells, recommending refactoring, and predicting potential errors based on historical data 
(Almeida et al., 2024; Gerede & Mazan, 2018). 
 
Despite their potential, adoption of these AI-driven code review tools remains slow. Developers express 
skepticism concerning the reliability, contextual accuracy, and ethical considerations associated with AI-
generated feedback (Bird et al., 2023; Ernst & Bavota, 2022). A recurring concern is whether AI can 
effectively comprehend and handle the nuances of business logic and project-specific contexts, which are 
critical to meaningful code assessments beyond superficial issues like syntax errors (Bird et al., 2023). 
Addressing these perceptions and challenges is essential to enhancing trust and integration of AI-driven 
tools into development workflows. 
 
This qualitative study investigates software developers' perceptions and challenges associated with AI-
driven code review tools. Through semi-structured interviews and thematic analysis, this research explores 



   
 

 
 

developers' experiences to identify key factors influencing their trust, acceptance, and integration of AI 
technologies in established development workflows. This investigation provides valuable insights into the 
strengths, limitations, and potential roles of AI-driven code review tools, emphasizing their capacity as 
complementary aids rather than replacements for human reviewers. This study contributes to enhance the 
future development, adoption, and effective use of AI in software engineering contexts by addressing the 
following research question: 
 
RQ1: What are the perceptions and challenges experienced by developers when using AI-driven code 
review tools? 
 

Review of the Literature 
  
Modern Code Review 
 
Modern Code Review (MCR) plays a crucial role in maintaining and enhancing the security and quality of 
software. The OWASP Code Review Guide (OWASP Foundation, Inc., 2017) provides a comprehensive 
framework for secure code reviews, emphasizing their integration into the software development life cycle 
(SDLC) to identify and mitigate vulnerabilities early, thus enhancing application security. The guide 
advocates for code reviews to promote a culture of security awareness and responsibility among 
development teams, facilitating knowledge sharing and skill development within organizations, leading to 
more secure software products. Furthermore, Khleel and Nehéz (2020) explore the role of code reviews, 
contrasting formal inspections with modern code reviews (MCR). While formal inspections are thorough, 
their cost and rigidity make them less suitable for agile environments. In contrast, supported by tools, MCR 
offers a flexible, collaborative approach that improves review efficiency and software quality. The study 
underscores optimizing code review processes by considering technical and non-technical factors to 
enhance collaboration and learning.  
 
Badampudi et al. (2023) also provide a comprehensive survey of MCR practices, proposing a research 
agenda to align academic research with industry practices, thereby enhancing the effectiveness and 
efficiency of MCR processes. The authors emphasize that MCR practices are essential for improving code 
quality, reducing post-delivery defects, and facilitating knowledge sharing among developers. Furthermore, 
Doğan and Tüzün (2022) identify prevalent code review smells in open-source software (OSS) projects, 
which impact software quality and development efficiency. Addressing these issues can reduce technical 
debt and improve code review practices, software quality, and collaboration. Finally, Afzali et al. (2023) 
highlight vulnerabilities in modern web-based code review systems due to inadequate integrity 
mechanisms, stressing the importance of code reviews in ensuring software quality and security. 
  
Ethical Considerations 
  
While the above research demonstrates substantial advancements in modern code review practices, ethical 
considerations continue to represent significant challenges that require further investigation. Trust, 
reliability, and contextual accuracy in AI-driven development environments (AIDEs) is crucial for their 
effective and ethical integration into software development. Ernst and Bavota (2022) discuss the emergence 
of AIDEs and their transformative potential in software engineering, exemplified by tools like GitHub 
Copilot, which use large language models such as Codex to automate routine coding tasks and enhance 
developer productivity through real-time code suggestions. Complementing this discussion, Bird et al. 
(2023) underscore the necessity of trust in AI-generated code and ethical considerations to adopt these tools 



   
 

 
 

effectively. Their research calls for future studies to enhance the reliability, contextual accuracy, and ethical 
implications of AI-powered programming tools, ensuring they complement developers' workflows and 
contribute positively to the software development process. Developers must balance the benefits of AI 
suggestions with potential risks, such as reduced code comprehension and increased security vulnerabilities. 
The integration of AI in software development underscores the need for new skills, particularly in code 
review and validation, and understanding the dynamics between developers and AI tools is essential for 
optimizing their use in real-world settings. 
  
Integrating Artificial Intelligence (AI) 
 
Recent research has highlighted the transformative potential of machine learning and AI in enhancing the 
efficiency and effectiveness of code review processes. Gerede and Mazan (2018) investigate the potential 
of predicting whether a source code change proposal will require revisions during a review. Using machine 
learning, the researchers achieved a 94.59% accuracy rate in predicting the necessity of revisions, with 
Random Forest algorithms emerging as the most effective method. This study highlights the potential of 
predictive models to streamline the code review process, reduce iteration counts, and improve developer 
satisfaction by providing actionable ideas before reviews begin. 
 
Building on these advancements, Pejic et al. (2023) explore enhancing pull request recommendation 
systems, particularly in large-scale repositories with extensive developer involvement. The findings 
highlight the importance of optimizing reviewer recommendations to manage large-scale repositories 
effectively, thus supporting better management of reviewer workloads and improving review process 
efficiency. Future research should explore additional basic filters and refine the technique for broader 
applicability, providing a robust foundation for optimizing reviewer recommendation systems in complex 
environments (Pejic et al., 2023). Additionally, Turzo et al. (2023) present a novel approach to enhancing 
code review (CR) analytics through the automated classification of CR comments. The authors developed 
a deep neural network (DNN)-based model that leverages code context, comment text, and code metrics to 
classify CR comments into five high-level categories. This model can prioritize high-priority feedback, 
improving the efficiency and effectiveness of CR tasks. In a related context, Yin et al. (2023) address the 
challenges posed by the increasing volume and complexity of the code review process by proposing an 
automated code review model that enhances learning through the combination of program structure and 
code sequence. Based on the pre-trained CodeBERT architecture, the model employs a program 
dependency graph serialization (PDG2Seq) algorithm to convert the program dependency graph into a 
unique graph code sequence, retaining both program structure and semantic information. The findings 
highlight the importance of preserving structural and semantic code information in analysis models and 
contribute to advancing automated tools for managing complex software development processes (Yin et 
al., 2023).  
  
Furthermore, Zydroń and Protasiewicz (2023) explore the automation of code review processes to improve 
efficiency and accuracy in large-scale software development projects. They highlight the challenge of 
manually assigning reviewers to pull requests and propose automated techniques utilizing machine learning, 
heuristic-based algorithms, and social network analysis to recommend suitable reviewers. The results 
indicate that the proposed automated review system can significantly enhance efficiency and accuracy in 
code review processes. Integrating natural language processing (NLP) and machine learning techniques, 
such as pre-trained models such as ChatGPT4, enhances review annotation and accuracy. These findings 
suggest that automated review systems can increase transparency and accountability, positively impacting 
project outcomes (Zydroń & Protasiewicz, 2023).  



   
 

 
 

  
In a comprehensive study, Almeida et al. (2024) explore the application of Artificial Intelligence (AI) in 
code review processes to enhance the quality and efficiency of software development. Their research 
demonstrated significant improvements in review efficiency and effectiveness. AICodeReview, a tool 
developed by the authors, reduced review time, detected more code smells, and facilitated more effective 
refactoring compared to manual reviews. These findings support the continued development and integration 
of AI-driven tools in software development workflows, emphasizing the importance of combining 
automated tools with human expertise for optimal outcomes in code reviews. Integrating AI-based 
techniques in code review processes offers significant potential for improving overall software quality and 
development efficiency (Almeida et al., 2024).  
  
Finally, Baumgartner et al. (2024) present an AI-driven pipeline designed to address data clumps in 
software repositories. Data clumps, or variables frequently appearing together, indicate poor code structure 
and pose maintenance challenges. The study shows that by integrating LLMs like ChatGPT, the pipeline 
provides semantic insights that improve refactoring accuracy, address maintenance challenges associated 
with data clumps, and reduce technical debt. The automated refactoring process enhances overall code 
quality and maintainability. The study concludes that combining AI-driven techniques with human 
expertise results in more effective refactoring processes, highlighting the potential of AI in transforming 
software maintenance practices (Baumgartner et al., 2024). 
  
Human Oversight 
  
The evolving landscape of code review processes highlights the interaction between automated tools and 
human oversight. Whether through peer reviews in distributed environments, automated task integration, 
or the use of advanced AI models, the emphasis remains on enhancing efficiency and effectiveness while 
maintaining the critical role of human expertise. Dos Santos and Nunes (2018) investigate the effectiveness 
of peer code review in distributed software development (DSD) using objective data from code repositories 
and subjective data from developer surveys. The study emphasizes the importance of considering technical 
and non-technical factors in DSD. While automated tools enhance the review process, they cannot replace 
the need for active human participation. The balance between review thoroughness and efficiency is critical, 
especially in DSD contexts. By combining empirical data and subjective insights, the study provides a 
comprehensive understanding of code review effectiveness, highlighting the nuanced requirements of peer 
code reviews in distributed environments (Dos Santos & Nunes, 2018). In a related study, Baumgartner et 
al. (2024) demonstrate how the automated refactoring process enhances overall code quality and 
maintainability. Their findings underscore that combining AI-driven techniques with human expertise 
results in more effective refactoring processes, highlighting AI's potential to transform software 
maintenance practices (Baumgartner et al., 2024). 
  
The literature illustrates significant advances in software quality facilitated by Modern Code Review 
(MCR) and AI-driven tools. According to Keary (2017), integrating structured security-focused code 
review practices into the software development life cycle (SDLC) enables early vulnerability detection, 
enhances software security, and fosters collaborative knowledge sharing among development teams. Khleel 
and Nehéz (2020) highlight MCR's adaptability for agile environments compared to traditional inspections. 
AI tools like AICodeReview and GitHub Copilot further enhance review efficiency and developer learning 
but raise ethical concerns around transparency and trust (Ernst & Bavota, 2022; Bird et al., 2023). Human 
oversight remains critical, particularly in complex and distributed contexts (Dos Santos & Nunes, 2018; 



   
 

 
 

Baumgartner et al., 2024). While AI-driven code reviews have transformative potential, their success 
depends on ethical integration and a balanced partnership with human expertise.  
 
Furthermore, Turzo (2023) proposes improving modern code reviews (MCR) effectiveness by automating 
tasks, such as reviewer selection and bug identification, to reduce time and resources spent. Integrating 
these models with static analysis tools can identify and suggest potential solutions for code defects that 
might otherwise be missed. This approach aims to streamline code reviews, making them more efficient 
while relying on human oversight to ensure the quality of the automated tools. Furthermore, Kotsiantis et 
al. (2024) explore AI-assisted programming, focusing on utilizing code embeddings and transformers to 
enhance software development tasks. These technologies reduce manual coding efforts and minimize 
errors, making software development more efficient. Kotsiantis et al.(2024) highlights the importance of 
addressing the limitations and challenges of current AI technologies. It emphasizes the need for 
collaboration between AI researchers and software developers to advance AI-assisted programming, 
suggesting that these tools will be widely adopted in integrated development environments (IDEs), playing 
a crucial role in the evolution of software development. 
 

Methodology 
 
This study focuses on qualitative research design to investigate the perceptions and challenges experienced 
by software developers using AI-driven code review tools. Specifically, thematic analysis was selected due 
to their ability to capture complex, nuanced perceptions and experiences that quantitative methods may 
overlook (Creswell, 2013). 
 
Instrument 
 
The instrument consisted of a semi-structured interview guide with open-ended questions organized into 
six sections. Section one focused on background and experience, section two explored perceptions, section 
three addressed challenges, section four gathered suggestions for improvement, section five examined 
future and ethical considerations, and section six included closing questions. This approach enabled in-
depth research and proved effective in detailing the experiences of participants and understanding the 
context in which these experiences occurred (Guest et al., 2006). 
 
Sampling 
 
Semi-structured interviews were conducted with 10 participants, including software developers, team leads, 
and software architects who used AI-driven code review tools for at least six months. The sample size is 
based on data saturation, which occurs when no new themes or insights emerge from additional data 
collection (Guest et al., 2006). This approach ensures rich and meaningful data collection while preserving 
research efficiency. 
 
Data Collection 
 
The data was analyzed using thematic analysis, a method for identifying, analyzing, and reporting patterns 
in qualitative data (Creswell, 2013). The interviews were transcribed and the initial codes were generated 
systematically throughout the dataset, reviewed and categorized into themes. The themes were then refined 
and validated to reflect the essence of the data in relation to the research questions. A thematic map was 
also created to illustrate the relationship between themes (Creswell, 2013). 



   
 

 
 

 
Results 

 
In regard to the research question, this study conducted a qualitative analysis of interview data from 10 
participants, including software developers, team leads, and software architects. The analysis performed 
using Quirkos, a qualitative data analysis software, allowed for systematic coding, organization, and 
visualization of insights, ensuring a comprehensive examination of developers' perceptions and challenges 
with AI-driven code review tools. The results revealed six key themes: efficiency, learning, trust, 
challenges, collaboration, and future expectations, providing a comprehensive understanding of how these 
tools affect software development workflows. 
  
Figure 1. Word Cloud 
 

 
 



   
 

 
 

Figure 2. Categories 
 
Role 

    
  50% Senior Developer 
  20% Technical Lead 
  10% Director 
  20% Developer 

 
Age 

    
  40% 20-30 
  20% 30-40 
  20% 40-50 
  20% 50-60 

 
Gender 

  
  90% Male 
  10% Female 

 
Development Experience (years) 

   
  50% 5-10 
  30% 10-20 
  20% 20+ 

 
AI-Driven Code Review Experience (years) 

    
  30% 0-1 
  40% 1-2 
  20% 2-3 
  10% 3+ 

 
 



   
 

 
 

Table 1. Themes  
 
Title Parent Total Codes 
Learning and Knowledge  Impact on Developer Skills 2 
Educational Tool Impact on Developer Skills 7 
Challenges Trust 3 
Hallucinations Skepticism 4 
Context Awareness Trust 5 
Code Consistency Skepticism 6 
Data Privacy Issues Skepticism 3 
Bias Ethics and Security Concerns 1 
Incorrect or Irrelevant Feedback Skepticism 14 
Impact on Developer Skills  4 
Trust  22 
AI vs. Traditional Code Reviews Trust 6 
Efficiency and Speed Productivity 7 
Potential to Evolve Future Expectations and Improvements 15 
Transparency Skepticism 6 
Ethics and Security Concerns  11 
Human-AI Collaboration Ethics and Security Concerns 14 
Skepticism Trust 13 
Reliability in Code Review Trust 14 
Lack of Context Understanding Skepticism 17 
Future Expectations and Improvements  20 
Productivity  19 
Reduce Workload Productivity 12 
Integration in Workflows Productivity 5 
Total Codes 230 
Total Quirks 24 

 
Efficiency and Productivity  
 
Participants highlighted that AI-driven tools reduced manual code review time and allowed focus on 
complex tasks, with many noting rapid feedback as a key benefit. The thoroughness of AI in detecting 
errors and suggesting improvements was a recurring theme, boosting productivity. Participants also noted 
that AI tools minimized human error, ensured consistency, and enabled faster development cycle iterations. 
Several participants emphasized that time saved with AI tools allowed them to allocate more effort to 
innovation, demonstrating the perceived value of these tools in improving workflow efficiency. 
 
Learning and Knowledge Enhancement  
 
Participants expressed that AI-driven code reviews reinforced coding principles and provided educational 
value through detailed explanations. This theme was prevalent, with many participants recognizing AI tools 
as ongoing learning aids that helped them adopt best practices. Additionally, participants highlighted that 



   
 

 
 

AI tools exposed them to alternative coding methods and encouraged them to stay updated with evolving 
standards. The guidance provided by AI tools was seen as particularly valuable for junior developers, 
providing mentoring support and accelerating their learning curve. 
 
Trust and Reliability  
 
While many participants acknowledged AI’s reliability in detecting errors, they also expressed skepticism 
regarding its ability to understand complex business logic and project-specific contexts. This skepticism 
was a shared concern among several developers, indicating a pattern of cautious reliance on AI feedback. 
Some participants noted that while AI tools were reliable for syntax and structural checks, the feedback 
often lacked awareness of broader project objectives, leading developers to selectively adopt AI 
recommendations. The importance of human oversight was repeatedly emphasized, with developers 
advocating for a balanced approach where AI serves as an assistant rather than a replacement. 
 
Challenges and Limitations  
 
A notable challenge identified by participants was the AI’s struggle with business logic, leading to improper 
suggestions. Contradictory feedback from AI tools created additional workload, and concerns about training 
data quality and ethical implications were often raised, highlighting widespread concerns. Developers 
reported that AI tools sometimes generated false positives, requiring careful review and offsetting some 
time-saving benefits. Ethical concerns included data privacy, bias in AI training models, and potential over-
reliance on automated systems, which participants believed could undermine critical thinking and 
collaborative code review practices. 
 
Collaboration and Workflow Integration  
 
Participants had mixed experiences with AI tools. While some valued quick feedback that reduced reliance 
on human reviewers, others felt AI hindered peer discussions. A recurring suggestion was improving AI’s 
contextual awareness for better workflow integration. Participants also noted that AI tools could disrupt 
established review processes by introducing conflicting suggestions that required mediation. However, 
many acknowledged that AI tools streamlined repetitive tasks when integrated effectively, allowing human 
reviewers to focus on high-impact code assessments, thus enhancing team efficiency. 
 
Future Expectations  
 
Participants expected AI tools to continue as complementary aids to human reviewers, with hopes for 
improvements that would reduce manual intervention. Several participants highlighted continuous training 
and adaptation of AI tools as essential, underlining the need for development. Participants expressed 
optimism about the future of AI-driven code review tools, such as improved contextual understanding, 
adaptive learning from project-specific code bases, and enhanced security features. The need for 
customizable AI-driven code review tools tailored to specific project needs was also stressed, with 
participants hoping for more transparent and explainable AI operations to build trust and improve adoption. 
 

Discussion  
 
The results of this qualitative study contribute to the existing literature by highlighting both positive 
perceptions and ongoing challenges faced by developers when using AI-driven code review tools. 



   
 

 
 

Consistent with prior research, the participants acknowledged multiple advantages associated with 
integrating AI-driven tools, including enhanced efficiency, productivity, and opportunities for skill 
enhancement (Almeida et al., 2024; Rasheed et al., 2024; Tufano et al., 2021). Participants reported that 
AI-driven tools effectively reduced their workload by quickly identifying errors, suggesting relevant 
refactoring options, and automating repetitive tasks. These observations align closely with Almeida et al. 
(2024), who found that AI tools significantly reduced the time required for code reviews while improving 
overall code quality. Similarly, Gerede and Mazan (2018) demonstrated that AI-based predictive models 
increased review efficiency and improved developer satisfaction by proactively identifying code issues 
requiring review.  
  
However, despite these perceived benefits, the study findings underscore persistent skepticism among 
developers, particularly regarding AI's limitations in handling complex business logic and domain-specific 
contexts. Participants expressed doubts about the AI tools ability to interpret deeper layers of contextual 
information, echoing concerns documented by Bird et al. (2023), who noted developers' reluctance to fully 
trust AI-generated suggestions due to perceived inadequacies in understanding intricate project-specific 
details. Ernst and Bavota (2022) further emphasized the importance of trust and reliability in AI-driven 
development environments, advocating that human oversight remains essential, especially when handling 
complex or sensitive software tasks.  
  
Moreover, ethical considerations emerged as a significant dimension shaping developer perceptions. 
Developers expressed concerns about data privacy, inherent biases in AI training datasets, and the risk of 
excessive reliance on automation, which could undermine the critical thinking and collaborative practices 
of developers. These ethical challenges mirror concerns discussed extensively in prior studies, including 
Baumgartner et al. (2024), who underscored the necessity of transparent and explainable AI 
recommendations to mitigate bias and promote accountability. The developers' apprehensions around 
ethical issues, particularly data privacy and bias, align with broader ethical discourses highlighted in recent 
literature (Bird et al., 2023; Ernst & Bavota, 2022).  
  
This study also reveals practical implications for improving AI-driven code review tools. Participants called 
for improvements in the contextual awareness and accuracy of AI tools, advocating for increased 
customization capabilities, transparency in recommendation processes, and seamless workflow integration. 
These findings are consistent with recommendations from the OWASP Code Review Guide (Keary, 2017), 
which emphasizes the integration of security best practices and transparency into software development 
processes. Furthermore, these findings align with studies by Pejic et al. (2023) and Zydroń and Protasiewicz 
(2023), which advocate for more contextually aware and customizable AI tools capable of adapting 
dynamically to specific project environments to optimize reviewer effectiveness and enhance overall 
software quality.  
  
Participants also expressed future expectations for AI-driven code review tools, highlighting the need for 
continuous improvement in adaptive learning capabilities, better contextual awareness, and more robust 
integration into existing development workflows. These expectations resonate with suggestions from 
Almeida et al. (2024) and Rasheed et al. (2024), who have recommended ongoing refinement of AI's 
capabilities through deeper contextual learning and integration into established human-driven processes.  
  
In summary, while the benefits of AI-driven code review tools in software engineering practices are 
recognized, there are still significant concerns about contextual understanding, trustworthiness, and ethical 
considerations. The current study reinforces the need for AI tools to evolve towards greater transparency, 



   
 

 
 

contextual sensitivity, and seamless integration into existing workflows, achieving a balanced partnership 
between automation and human expertise. 
 

Conclusion 
 
This qualitative research explored the perceptions and challenges of software developers using AI-driven 
code review tools. The literature review highlighted existing knowledge regarding AI's ability to improve 
code review efficiency, productivity, and skills while underscoring prevalent concerns regarding trust, 
contextual understanding, and ethical implications (Almeida et al., 2024; Bird et al., 2023; Ernst & Bavota, 
2022; Tufano et al., 2021). 
 
Semi-structured interviews were conducted with software developers, technical leads and solution 
architects using thematic analysis. The thematic analysis revealed six key themes: efficiency and 
productivity, learning and knowledge enhancement, trust and reliability, challenges and limitations, 
collaboration and workflow integration, and future expectations. Participants acknowledged that AI-driven 
tools reduce repetitive tasks, increased productivity, and improved continuous learning. However, 
skepticism persisted regarding the tools' limitations in contextual understanding, ethical concerns, and 
reliability, underscoring the continued necessity of human oversight. 
 
The discussion aligned these findings with previous studies, highlighting persistent challenges related to 
trust, contextual understanding, and ethical considerations when integrating AI tools in software 
development (Bird et al., 2023; Ernst & Bavota, 2022). Consistent with research advocating for human 
oversight in AI-driven software engineering practices (Baumgartner et al., 2024), this study underscores 
the necessity of balanced human-AI collaboration rather than complete automation. 
 
In summary, this research provides evidence supporting a hybrid model, emphasizing the complementary 
role of AI-driven code review tools and human expertise. Future research should address AI limitations, 
especially contextual understanding and ethical transparency, aligning technological advances with ethical 
standards in software engineering. 
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