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Abstract 
 

The increasing complexity of enterprise IT systems and evolving cybersecurity threats necessitate efficient 
vulnerability management. Traditional patch management methods are slow and prone to errors, positioning 
AI-driven patch management systems as a viable solution through the automation of vulnerability detection, 
prioritization, and remediation. This quantitative study applies the Technology Acceptance Model (TAM) 
to examine how perceived usefulness (PU), perceived ease of use (PEOU), and attitude toward use (ATU) 
influence behavioral intention (BI) to adopt AI-driven solutions. Findings reveal that attitude toward use 
(ATU) is the strongest predictor of adoption, followed by perceived usefulness (PU), while perceived ease 
of use (PEOU) has no significant impact. These results underscore the importance of organizations in 
fostering positive user attitudes and effectively communicating the benefits of AI to drive adoption. These 
findings advance the literature on AI adoption in cybersecurity by clarifying the roles of user perception 
and attitude in shaping adoption behavior within enterprise IT settings. 
 
Keywords: AI-driven patch management, vulnerability management, cybersecurity, Technology 
Acceptance Model, enterprise IT systems, behavioral intention 
 

Introduction  
 
Managing security patches in enterprise IT environments is a cornerstone of cybersecurity. However, it 
remains a persistent challenge due to increasingly complex infrastructures and rapidly evolving cyber 
threats. Wong (2024) highlights that traditional patch management methods, which rely heavily on manual 
processes, often fail to scale with modern demands, exposing organizations to risks such as security 
breaches and operational disruptions. To address these limitations, Artificial Intelligence (AI) presents a 
transformative approach to patch management. Wong (2024) states that AI-driven patch management 
systems enhance speed, accuracy, and scalability by automating vulnerability identification, prioritization, 
and remediation tasks. These systems also reduce manual workloads, enabling IT professionals to focus on 
proactive threat mitigation and other strategic cybersecurity initiatives. 
 
This study examines IT professionals' perceptions of AI-driven patch management systems through the lens 
of the Technology Acceptance Model (TAM). Developed by Davis (1989), TAM outlines how perceived 
usefulness (PU), perceived ease of use (PEOU), and attitude toward use (ATU) influence behavioral 
intention (BI). The findings from this study will offer insights into the key factors driving AI adoption in 
enterprise IT environments. 
 
Traditional cybersecurity vulnerability management methods are often inefficient and labor-intensive, 
leading to delays that increase the risk of cyber threats, security breaches, and data loss. Wong (2024) 
explains that manual processes struggle to keep pace with the rapid emergence of new vulnerabilities, 
making it difficult for organizations to maintain effective cybersecurity defenses. To mitigate these 
challenges, Jawaid (2023) highlights the potential of AI-driven patch management systems, which automate 
vulnerability identification and prioritization, enabling faster and more efficient threat response. Similarly, 
Goswami (2019) emphasizes that AI enhances scalability by intelligently prioritizing and remediating 
vulnerabilities based on their criticality and impact, allowing organizations to allocate resources more 
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effectively. Furthermore, Harshith et al. (2024) highlight AI’s role in automating routine security tasks, 
improving operational efficiency, and enabling security teams to focus on more complex threat detection 
and response strategies. By integrating AI-driven automation, organizations can significantly enhance their 
cybersecurity resilience and improve overall threat management capabilities. 
 
This study aims to assess how three predictor variables — perceived usefulness, perceived ease of use, and 
attitude toward use — influence the dependent variable, behavioral intention, among IT professionals who 
adopt AI-driven patch management systems. By examining these relationships, the study aims to address 
inefficiencies in traditional patching methods and provide insights into the factors that influence the 
adoption of AI in large-scale IT environments. The findings will contribute to developing more effective 
and scalable patch management strategies, ultimately enhancing security and operational efficiency in 
enterprise IT environments. The purpose of this research is to answer the following research question: 
 
RQ1: Which of the three predictor variables (i.e., perceived usefulness, perceived ease of use, and attitude 
toward use) significantly influences IT professionals' behavioral intention to adopt AI-driven patch 
management solutions? 
 
Research objectives 
 
This study aims to identify the predictor variables —specifically, perceived usefulness, perceived ease of 
use, and attitude toward use — that significantly impact IT professionals' behavioral intention to adopt AI-
driven patch management systems. By exploring the role of these factors in AI adoption for vulnerability 
remediation, the research will enhance the understanding of how AI-based patch management strategies 
can address current inefficiencies, ultimately improving security practices in enterprise IT environments. 
 

Review of Literature 
 
Challenges of traditional patch management 
 
Traditional patch management processes face several limitations, including reliance on periodic scans and 
manual processes that are inherently reactive, time-consuming, and prone to human error (Wong, 2024). 
These inefficiencies result in delays in addressing newly discovered vulnerabilities, increasing the risk of 
exploitation by attackers. Wong (2024) highlights how AI-driven systems address these limitations by 
automating vulnerability identification, prioritization, and remediation tasks. This approach accelerates 
responses and reduces the likelihood of overlooking critical vulnerabilities, improving operational 
efficiency. Additionally, AI's scalability makes it suitable for large and complex IT environments, enabling 
organizations to proactively and adaptively address cybersecurity challenges (Wong, 2024). 
 
One critical limitation is dependence on manual processes. Wong (2024) notes that analyzing scan reports 
to prioritize vulnerabilities often overwhelms security teams, particularly in large-scale environments with 
high volumes of vulnerabilities. Similarly, Sontan and Samuel (2024) argue that manual patch deployment 
introduces risks, such as errors in patch application or incompatibilities with existing systems, which can 
potentially cause service disruptions or introduce new vulnerabilities. The growing complexity of IT 
infrastructures and the overwhelming number of alerts generated by traditional tools exacerbate these 
challenges. Conventional methods also struggle to keep pace with the rapidly evolving threat landscape, 
leaving organizations vulnerable to exploitation (Goswami, 2019). 
Another significant challenge is the time-intensive nature of traditional patch management. Wong (2024) 
explains that fixed-interval vulnerability scans leave gaps during which newly emerging threats can remain 
undetected for weeks or months. Additionally, the lengthy process of testing and deploying patches across 
diverse IT environments delays remediation, increasing the exposure of critical systems to potential threats. 
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Scalability issues further hinder traditional patch management practices. Sontan and Samuel (2024) 
emphasize that resource-intensive manual processes cannot meet the demands of large, interconnected IT 
infrastructures. As vulnerabilities increase and IT systems become more complex, traditional methods fail 
to provide adequate coverage, exposing organizations to heightened risk. 
 
Traditional patch management methods face significant limitations, including reliance on manual 
processes, scalability issues, and delays in addressing vulnerabilities. These inefficiencies expose 
organizations to evolving cyber threats, highlighting the need for automation. Wong (2024) and Sontan and 
Samuel (2024) emphasize that AI-driven systems can overcome these challenges by improving efficiency, 
reducing human error, and ensuring timely responses to emerging risks. 
 
AI-driven patch management systems 
 
AI-driven patch management systems offer advanced solutions to address the inefficiencies of traditional 
patch management methods. Goswami (2019) explains that these systems prioritize patches by evaluating 
criticality, potential impact, and compatibility with existing infrastructure. This targeted approach 
minimizes operational disruptions while effectively addressing vulnerabilities. Organizations can 
proactively schedule patches by analyzing extensive datasets, including historical attack patterns and real-
time threat intelligence, reducing their exposure to emerging threats. 
 
Recent innovations, particularly those in generative AI, have significantly enhanced the capabilities of these 
systems. Wong (2024) describes how AI models leverage machine learning (ML) and deep learning (DL) 
techniques to optimize patch management and vulnerability remediation. AI-generated synthetic data can 
assist in training security models to identify emerging threats and test patch effectiveness in controlled 
environments. Harshith et al. (2024) further demonstrate that AI-powered automation improves efficiency 
by reducing the manual workload associated with patch prioritization, scheduling, and deployment tasks. 
By automating these processes, cybersecurity professionals can focus on proactive threat hunting and 
strategic incident response. 
 
AI-driven automation also plays a key role in vulnerability remediation. Samtani et al. (2020) highlight the 
role of AI in cyber threat intelligence and adversarial machine learning, emphasizing its ability to analyze 
vast amounts of security data and improve decision-making in security operations. However, AI-based 
remediation requires ongoing monitoring to mitigate risks associated with false positives and adversarial 
threats. Wong (2024) supports this by explaining how ML models continuously refine cybersecurity 
defenses through adaptive learning. 
 
Generative AI's ability to create predictive threat models based on simulated data offers additional benefits. 
Harshith et al. (2024) discuss how AI-driven simulations enhance security planning by predicting potential 
attack vectors and proactively mitigating risks. Organizations that integrate AI-driven automation into their 
patch management strategies can significantly reduce downtime, optimize resource allocation, and enhance 
security posture. 
 
Organizations can enhance accuracy, reduce operational disruptions, and proactively address zero-day 
vulnerabilities by adopting generative AI and automated patch management. Harshith et al. (2024) and 
Wong (2024) emphasize the integration of AI-driven automation to optimize patch deployment and ensure 
robust cybersecurity defenses. 
 
Benefits of AI and ML in patch management 
 
Integrating AI and ML into patch management significantly improves efficiency, accuracy, and scalability. 
Harshith (2024) explains that AI systems apply advanced behavioral analysis and anomaly detection to 
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identify real-time vulnerabilities, quickly neutralizing potential risks. By automating these processes, 
organizations minimize downtime and maintain operational continuity. 
 
AI's speed and accuracy in detecting and addressing vulnerabilities are key advantages. Jawaid (2023) 
explains that AI algorithms rapidly analyze network traffic to identify unusual behaviors or security flaws, 
prioritizing critical vulnerabilities for immediate remediation. This capability reduces the risk of 
exploitation and enables a faster response to threats than traditional methods. 
 
AI-driven automation also enhances patch deployment processes. Sontan and Samuel (2024) note that AI 
systems can autonomously analyze security alerts and execute predefined patching actions, reducing the 
time required to address vulnerabilities. These systems consistently apply standardized protocols, 
minimizing the likelihood of human error and ensuring accurate remediation. Moreover, automation allows 
security teams to focus on more strategic tasks, improving overall efficiency. 
 
Another significant benefit of ML models is their adaptability. Harshith (2024) notes that ML techniques 
enable systems to predict vulnerabilities based on historical data, facilitating preemptive patching. 
Similarly, Jawaid (2023) highlights that continuous learning enhances the resilience of AI systems, ensuring 
they remain effective against evolving threats. AI's scalability also ensures that patch management 
processes can accommodate increasing data volumes and IT complexities, as Harshith (2024) and Sontan 
and Samuel (2024) noted. 
 
Integrating AI and ML in patch management enhances efficiency, scalability, and accuracy. With 
capabilities such as real-time vulnerability detection and predictive modeling, these technologies reduce 
downtime and improve operational resilience. Harshith (2024) and Jawaid (2023) illustrate how AI-driven 
automation enables organizations to address vulnerabilities preemptively, supporting a more proactive 
approach to cybersecurity. 
 
Challenges of AI and ML in patch management 
 
Despite AI and ML's benefits in patch management, their adoption presents unique challenges. Goswami 
(2019) emphasizes the importance of robust training data, noting that insufficient or low-quality datasets 
can result in inaccurate vulnerability assessments. Addressing this challenge requires comprehensive and 
diverse datasets to improve algorithm reliability. 
 
Bias in AI systems is another concern. Harshith et al. (2024) and Muthuraj and Singla (2023) highlight that 
biases in training data can lead to inconsistent prioritization of vulnerabilities, potentially leaving critical 
security gaps unresolved. Transparent model development practices and regular evaluations are necessary 
to mitigate these biases. 
 
Transparency and accountability are critical for building trust in AI-driven systems. Sontan and Samuel 
(2024) emphasize the importance of Explainable AI (XAI) in cybersecurity, arguing that straightforward 
interpretability techniques are necessary to clarify the decision-making process behind patch prioritization 
and deployment. They highlight approaches such as feature importance analysis, which provides insights 
into AI-driven processes and enables better oversight (Sontan & Samuel, 2024). 
 
Other challenges include the accuracy of AI systems. Harshith et al. (2024) caution that AI may misinterpret 
benign configurations as vulnerabilities or fail to detect novel threats, resulting in false positives or 
negatives. Continuous refinement of AI models is essential for improving their performance (Muthuraj & 
Singla, 2023). Data privacy concerns also arise, as AI training often requires sensitive data, increasing the 
risk of breaches (Sontan & Samuel, 2024). Employing data anonymization techniques can help address 
these risks. 
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Integrating AI into patch management necessitates overcoming challenges such as ensuring compatibility 
with legacy systems and addressing the shortage of skilled professionals. Workforce development and 
educational programs are essential for ensuring the effective implementation and maintenance of AI-driven 
systems (Muthuraj & Singla, 2023). 
 
Adopting AI and ML in patch management presents several challenges, including ensuring the availability 
of high-quality training data and mitigating biases that can impact vulnerability prioritization (Goswami, 
2019; Harshith et al., 2024). Transparency through Explainable AI (XAI) and regular evaluations are crucial 
for building trust (Sontan & Samuel, 2024). Additional hurdles include false positives, data privacy risks, 
and workforce development to address legacy system compatibility and skill gaps (Muthuraj & Singla, 
2023). 
 
Perceptions of AI adoption in cybersecurity 
 
Perceptions of artificial intelligence (AI) play a pivotal role in shaping its adoption and success within 
cybersecurity applications. Organizations widely regard the deployment of AI in cybersecurity as a critical 
advancement that boosts operational efficiency and alleviates repetitive tasks. AI-driven systems streamline 
processes, enhance productivity, and deliver scalable solutions for vulnerability management at the 
enterprise level (Radebe et al., 2022). Automation enables cybersecurity professionals to focus on high-
priority issues rather than routine operational tasks. These systems also reduce false positives, allowing the 
teams to prioritize genuine threats and actionable insights, enhancing their overall effectiveness (Radebe et 
al., 2022). 
 
User attitudes and behavioral intentions influence the adoption of AI tools, as these are core components of 
the Technology Acceptance Model (TAM) (Davis, 1989). TAM suggests that perceived usefulness—the 
extent to which a user believes that technology will enhance job performance—and perceived ease of use—
the extent to which a user thinks the technology will be effortless—are primary determinants of user 
acceptance (Davis, 1989). These constructs directly influence attitudes toward technology use and 
behavioral intention, predicting usage (Davis, 1989). 
 
In cybersecurity, perceived usefulness is critical in shaping attitudes toward AI adoption. AI-enabled 
systems streamline data collection and incident investigation, significantly reducing response times and 
improving operational efficiency (Radebe et al., 2022). The study by Radebe et al. (2022) highlights that 
AI tools enhance productivity by automating security tasks, minimizing manual workload, and improving 
response times, all of which contribute to their perceived usefulness. Similarly, perceived ease of use 
influences behavioral intention by reducing resistance to new technology. Systems that integrate seamlessly 
into workflows and require minimal training enhance users' confidence and willingness to adopt them 
(Davis, 1989). 
 
TAM emphasizes that positive attitudes toward using technology directly influence behavioral intention. 
Users are more likely to exhibit a firm intention to adopt and continue using AI systems when they perceive 
them as valuable and easy to use (Davis, 1989). In cybersecurity, this relationship highlights the importance 
of designing AI tools with user-centered features that address specific challenges, such as reducing false 
positives and improving data analysis efficiency (Radebe et al., 2022). Providing adequate training and 
demonstrating the practical benefits of AI systems further strengthens the user's intention to adopt such 
technologies (Davis, 1989; Radebe et al., 2022). 
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Methodology 
 

Instrument 
 
This study employs a survey instrument based on the Technology Acceptance Model (TAM), first 
introduced by Davis (1989), a foundational model for understanding technology adoption. TAM identifies 
perceived usefulness (PU) and perceived ease of use (PEOU) as primary factors influencing behavioral 
intention (BI) to use technology. Attitude toward use (ATU) is a mediating factor that captures users' 
affective responses toward system adoption (Davis, 1989). 
 
The study defines and measures the TAM constructs as follows: 
 

1. PU is measured using four items that assess participants' perceptions of how AI-driven patch 
management systems enhance job performance, streamline tasks, and improve security. These 
items align with Davis’s (1989) definition of PU as a key determinant of BI. 

2. PEOU assesses participants' perceptions of how easily they can learn, integrate, and use AI-driven 
patch management systems through four evaluation items. Davis (1989) demonstrated that PEOU 
directly influences BI and indirectly affects PU by shaping perceptions of usability. 

3. ATU assesses participants' confidence, enthusiasm, and attitude toward adopting AI-driven patch 
management systems through four items. In Davis’s (1989) original TAM model, ATU mediates 
the relationship between PU, PEOU, and BI, reflecting the role of user perceptions in technology 
adoption. 

4. BI is measured using three items that assess participants' willingness to support and adopt AI-driven 
patch management systems within their organizations. Davis (1989) identified BI as the strongest 
predictor of actual technology use. 

 
Survey Design 
 
The survey employs a 7-point Likert scale, where participants rate their level of agreement with each 
statement, ranging from 1 (Strongly Disagree) to 7 (Strongly Agree). This scaling method is commonly 
used in TAM-based research to capture user perceptions and adoption intentions with greater granularity 
(Davis, 1989). 
 
The survey is designed for IT professionals and aligns with TAM’s core constructs: PU, PEOU, ATU, and 
BI, ensuring relevance to AI-driven patch management systems. The Appendix contains a complete list of 
survey items. Figure 1 presents TAM, illustrating the relationships among these constructs and serving as 
the foundation for this study. 
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Figure 1 
 
Technology Acceptance Model (TAM) For Assessing IT Professionals' Perceptions of AI-Driven Patch 
Management 
 

 
Note. Adapted from Davis (1989). The TAM model illustrates how perceived usefulness (PU) and 
perceived ease of use (PEOU) influence attitude toward use (ATU), which, in turn, affects behavioral 
intention (BI). 
 
Subjects and procedure 
 
The researcher administered the survey electronically through SurveyMonkey, ensuring that all questions 
were mandatory to obtain a complete dataset. SurveyMonkey enables researchers to efficiently create and 
distribute customized surveys via email or websites, facilitating data collection through descriptive 
statistics, graphical reports, and exportable spreadsheets (Creswell & Creswell, 2018). 
 
Of the 123 individuals who accessed the survey, 120 provided electronic consent and completed the 
questionnaire as the informed consent process required. The final dataset includes these 120 valid 
responses, excluding those who did not consent or complete the survey. 
 
Data cleaning procedures were performed before analysis to ensure data accuracy and consistency. The 
researcher: 
 

1. Removed responses from participants who did not consent to comply with ethical research 
guidelines. 

2. Checked for incomplete responses and excluded cases with missing data affecting key variables. 
3. Verified response consistency to ensure data validity. 

 
The researcher employed a non-probability convenience sampling approach, selecting respondents based 
on availability rather than systematic randomization. This method aligns with the quantitative research 
guidelines Creswell and Creswell (2018) outlined. Additionally, purposive sampling was applied to target 
individuals in Information Technology roles within the United States, ensuring alignment with the study's 
objectives, as described by Etikan et al. (2015). 
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To ensure ethical compliance, the researcher obtained Institutional Review Board (IRB) approval and 
provided participants with details about the study's purpose, confidentiality measures, and their right to 
withdraw before obtaining electronic consent. Data collection was conducted securely through 
SurveyMonkey, and responses were automatically anonymized following best practices for online research 
(Roberts & Allen, 2015). 
 
The final sample of 120 IT professionals meets the recommended sample-to-variable ratio guideline of 20:1 
for factor analysis (Rahman, 2023). Since this study examined four constructs (PU, PEOU, ATU, and BI), 
the minimum required sample size was 80 participants. Exceeding this threshold enhances the reliability 
and robustness of the data analysis. 
 
Data analysis 
 
The researcher analyzed the survey data using SPSS version 29 to examine relationships between PU, 
PEOU, ATU, and BI in adopting AI-driven patch management systems. 
 
Before conducting statistical analyses, the researcher cleaned the dataset by removing responses from 
participants who did not consent or failed to complete the survey. This process ensured that the final dataset 
included 120 valid responses, improving the accuracy and reliability of the results. 
 
The researcher used descriptive statistics to summarize responses for each construct, providing measures 
of central tendency (mean) and variability (standard deviation). To assess the internal consistency of the 
measurement scales, the researcher calculated Cronbach's alpha for each construct. 
 
The researcher conducted a multiple regression analysis to evaluate the impact of PU, PEOU, and ATU on 
BI. This analysis assessed the overall goodness of fit of the model and the statistical significance of 
individual predictors, adhering to established guidelines for SPSS data analysis. The researcher tested the 
assumptions of multiple regression by examining the normality of residuals using histograms, P-P plots, 
and scatterplots. 
 

Results 
 

This section presents the results of the data analysis, following the order of statistical tests conducted. These 
tests include descriptive statistics, reliability analysis, multiple regression analysis, and diagnostics for 
regression assumptions. The multiple regression analysis examines the extent to which perceived usefulness 
(PU), perceived ease of use (PEOU), and attitude toward use (ATU) predict behavioral intention (BI) to 
adopt AI-driven patch management solutions. 
 
Descriptive and reliability analysis 
 
The survey data were analyzed using SPSS to explore relationships between PU, PEOU, ATU, and BI in 
adopting AI-driven patch management systems. The researcher computed descriptive statistics to 
summarize participant responses and provide insights into central tendencies and variability. Knapp (2017) 
emphasizes the importance of descriptive statistics in survey data analysis, highlighting how measures such 
as means, standard deviations, and ranges offer a comprehensive view of participant perceptions. 
 
Table 1 presents the descriptive statistics, including each construct's mean, standard deviation, minimum, 
and maximum values. The results indicate that participants generally held positive perceptions of AI-driven 
patch management solutions: 

• PU_Avg had a mean of 4.79 (SD = 1.40), indicating that respondents found the system beneficial 
for enhancing job performance and security. 
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• PEOU_Avg had a mean of 4.30 (SD = 1.29), showing slightly more significant variability in how 
easily participants believed they could integrate the system into existing workflows. 

• ATU_Avg had a mean of 4.58 (SD = 1.53), indicating a generally favorable attitude toward 
adopting AI-driven patch management systems. 

• BI_Avg had a mean of 4.49 (SD = 1.60), indicating a moderate to high likelihood of adoption if 
implemented in organizations. 

 
Table 1 
 
Descriptive Statistics for Key Study Constructs 
 

 
Note. PU = perceived usefulness; PEOU = perceived ease of use; ATU = attitude toward use; BI = 
behavioral intention. 
 
A reliability analysis using Cronbach's Alpha assessed the internal consistency of each construct, with all 
values exceeding the recommended threshold of 0.70. Taber (2017) explains that Cronbach's alpha values 
above 0.70 indicate strong reliability. Table 2 presents Cronbach’s alpha values for each construct, 
confirming the internal consistency of the measures. 
 
Table 2 
 
Cronbach’s Alpha for Reliability Analysis 
 

Construct Cronbach’s Alpha (α) Interpretation 
Perceived Usefulness (PU) .923 Excellent 
Perceived Ease of Use (PEOU) .870 Good 
Attitude Toward Use (ATU) .950 Excellent 
Behavioral Intention (BI) .933 Excellent 

Note. Cronbach's Alpha values of 0.70 or higher indicate acceptable reliability, values of 0.80 or higher 
indicate good reliability, and values of 0.90 or higher indicate excellent reliability (Taber, 2017). 
 
Multiple regression analysis 
 
The researcher conducted a multiple regression analysis regarding the research question (RQ1), examining 
which of the three predictor variables—PU, PEOU, and ATU—significantly influence IT professionals' BI 
to adopt AI-driven patch management solutions. 
 
The researcher mitigated multicollinearity by creating composite scores for PU_Avg, PEOU_Avg, and 
ATU_Avg, following Frost’s (n.d.) recommendation to reduce the risk of inflated R² values when including 
multiple predictors. 
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Model fit 
 
The model summary in Table 3 indicates a strong positive relationship between the predictor variables and 
BI_Avg, with: 
 

• R = 0.910, indicating a high correlation between predictors and Behavioral Intention. 
• R² = 0.828, showing that PU, PEOU, and ATU explain 82.8% of the variance in BI_Avg. 
• Adjusted R² = 0.824, suggesting the model generalizes well without overfitting. 

 
Frost (n.d.) cautions that unnecessary variables may artificially inflate R², but the slight difference between 
R² and Adjusted R² indicates that the model maintains strong predictive integrity. The standard error of the 
estimate (SEE) is 0.675, indicating the degree to which predicted values align with the observed data (Frost, 
n.d.). 
 
Table 3 
 
Model Summary for Multiple Regression Predicting Behavioral Intention (BI) 

 

 
Note. PU = perceived usefulness; PEOU = perceived ease of use; ATU = attitude toward use; BI = 
behavioral intention. 
 
Model significance 
 
The ANOVA results (Table 4) confirm that the regression model is statistically significant: 
 

• F (3, 115) = 184.553, p < .001, indicating that the predictor variables, as a group, significantly 
explain variance in BI_Avg. 

• ANOVA uses the F-statistic and p-value to determine whether the model fits better than one without 
predictors. Knapp (2017) notes that p-values below .05 indicate statistical significance, supporting 
the model's validity. 
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Table 4 
 
ANOVA for Multiple Regression Model 
 

 
Note. PU = perceived usefulness; PEOU = perceived ease of use; ATU = attitude toward use; BI = 
behavioral intention. p < .001. 
 
Predictor significance and effect sizes 
 
As shown in Table 5, the regression coefficients provide insights into the individual impact of each predictor 
on BI_Avg: 
 
Table 5 
 
Coefficients of Predictors on Behavioral Intention 
 

 
Note. PU = perceived usefulness; PEOU = perceived ease of use; ATU = attitude toward use; BI = 
behavioral intention. p < .001. 
 
Among the predictors, ATU had the most substantial effect on BI (B = 0.652, p < .001), indicating that a 
positive attitude toward AI-driven patch management significantly increases the intention to adopt it. PU 
also showed a significant positive effect (B = 0.263, p = .008), suggesting that IT professionals are more 
likely to adopt the solution if they perceive it as useful. In contrast, PEOU had a weaker, non-significant 
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effect (B = 0.125, p = .064), indicating that ease of use is not a primary factor in adoption decisions. The p-
values indicate the statistical significance of these results, with values below .05 representing significant 
relationships (Knapp, 2017). 

 
Multicollinearity assessment 
 
The researcher examined the Variance Inflation Factor (VIF) values to assess potential multicollinearity. 
Knapp (2017) states that VIF values above 5 indicate possible multicollinearity, while values exceeding 10 
suggest severe collinearity issues. As shown in Table 5: 
 

• PU_Avg: VIF = 4.964 
• ATU_Avg: VIF = 5.280 
• PEOU_Avg: VIF = 1.935 

 
These values indicate moderate multicollinearity for PU and ATU, whereas PEOU does not raise concerns. 
However, no corrective action was necessary, as the VIF values remained below the severe threshold of 10. 
 
Regression assumption diagnostics 
 
To validate the assumptions of multiple regression, the researcher examined a histogram, a P-P plot, and a 
scatterplot following recommendations by Laerd Statistics (n.d.). 
 

• The histogram of standardized residuals suggests an approximately normal distribution, forming a 
roughly symmetric, bell-shaped curve. 

• The P-P plot of standardized residuals indicates that the data follows the expected normal 
distribution, with points aligning along the diagonal. 

• The scatterplot of standardized predicted values versus standardized residuals shows no discernible 
pattern or funneling, confirming homoscedasticity and the assumption of constant variance. 
 

These results support the regression model's validity, ensuring its findings' reliability. 
 

Discussion 
 
The findings of this study demonstrate that ATU is the most significant predictor of IT professionals' 
behavioral intentions (BI) to adopt AI-driven patch management systems, with a beta coefficient of 0.652 
and a p-value of less than 0.001 (see Table 5). This result aligns closely with Davis’s (1989) Technology 
Acceptance Model (TAM), which highlights attitudes as critical predictors of technology adoption. High 
mean scores on survey items measuring ATU (Appendix, Items 10–13) confirmed strong positive 
sentiments among IT professionals toward adopting AI-driven systems. Specifically, participants expressed 
enthusiasm for the potential benefits of these systems, such as improved cybersecurity and more efficient 
vulnerability management. 
 
PU also significantly influenced BI, although less prominently than ATU (B = 0.263, p = .008; see Table 
5). Survey responses (Appendix, Items 1–4) revealed that IT professionals recognize AI's practical 
advantages, including the automation of routine tasks and more effective vulnerability management, which 
aligns with existing cybersecurity literature (Harshith et al., 2024; Jawaid, 2023). Despite acknowledging 
these benefits, the lower predictive power of PU relative to ATU indicates that positive attitudes toward AI 
may play a more decisive role in adoption decisions. 
 
Interestingly, PEOU did not significantly influence BI (B = 0.125, p = .064; see Table 5). Survey responses 
(Appendix, Items 5–8) indicated that although IT professionals believed they could quickly learn and 
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operate AI-driven patch management systems, ease of use alone was not a strong driver of their adoption 
intentions. This aligns partially with Radebe et al. (2022), who suggest experienced cybersecurity 
professionals value system functionality and automation capabilities above ease of use. However, this 
contrasts with Geddam et al. (2024), whose findings indicate that both PU and PEOU significantly influence 
BI directly and indirectly via ATU. Differences in context, precisely the expertise level and familiarity with 
sophisticated technologies among IT professionals, may explain this divergence. 
 
These insights collectively emphasize the importance of strategically addressing user attitudes through 
training, clear communication of operational benefits, and prioritizing robust, reliable performance in AI 
tool design. Organizations can significantly boost AI adoption rates and strengthen cybersecurity resilience 
by adopting these strategic approaches. 
 
Implications of findings 
 
The importance of attitude toward AI adoption 
 
This study highlights the critical role of ATU in the adoption of AI-driven patch management systems. 
Davis (1989) identifies attitudes toward technology as key drivers of BI, a position reinforced by this 
study’s findings (B = 0.652, p < .001; see Table 5). Similarly, Geddam et al. (2024) indicate that PU and 
PEOU directly and indirectly influence BI through ATU. The strong predictive power of ATU suggests 
that organizations should invest in targeted training programs that emphasize the practical benefits of AI, 
such as reducing manual workloads and improving accuracy. Addressing user concerns, providing hands-
on experience, and ensuring transparent communication can strengthen positive attitudes toward AI 
adoption. 
 
Perceived usefulness as a secondary adoption factor 
 
PU also significantly influenced adoption (B = 0.263, p = .008; see Table 5), supporting Davis’s (1989) 
assertion that usefulness is a key determinant of technology adoption. Geddam et al. (2024) note that when 
users recognize how AI enhances job performance, their willingness to adopt the technology increases. 
Therefore, organizations should focus on demonstrating the impact of AI on streamlining cybersecurity 
operations and improving efficiency. By clearly communicating these benefits, organizations can build user 
confidence and encourage broader adoption. 
 
Minimal impact of perceived ease of use 
 
In this study, PEOU did not significantly influence BI (B = 0.125, p = .064; see Table 5). Although Geddam 
et al. (2024) found significant direct and indirect effects of both PU and PEOU on BI through ATU, 
contextual differences might explain the differing results of the current study. Specifically, the sample of 
experienced IT professionals in the current study may prioritize system functionality, performance, and 
security benefits over ease of use. Therefore, organizations targeting skilled cybersecurity professionals 
should emphasize system robustness and performance over simplistic interfaces when implementing AI-
driven solutions. 
 
Evaluating TAM’s role in AI-driven patch management 
 
The high R² value of 0.828 (see Table 3) confirms TAM’s effectiveness in explaining AI adoption within 
cybersecurity contexts. Knapp (2017) emphasizes that high R² values indicate a strong model fit, thereby 
reinforcing the validity of TAM in understanding AI-driven adoption behaviors. This study extends 
previous TAM research by demonstrating that ATU is the strongest predictor of adoption, while PEOU is 
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not a significant factor. These findings suggest that IT professionals prioritize system functionality and 
security over ease of use when assessing AI-driven solutions. 
 
Additionally, a multicollinearity assessment (see Table 5) showed that PU_Avg (VIF = 4.964) and 
ATU_Avg (VIF = 5.280) exhibited moderate multicollinearity but remained below the severe threshold 
(VIF > 10) (Knapp, 2017). This indicates that the predictors in this model are sufficiently independent, 
justifying their inclusion in the regression analysis. 
 
Practical implications 
 
Based on these findings, organizations should: 
 

• Develop strategies to foster positive attitudes toward AI adoption by highlighting AI's practical 
benefits, providing comprehensive training, and transparently addressing user concerns. 

• Communicate AI’s operational benefits, emphasizing its capacity to streamline cybersecurity 
operations and enhance job performance. 

• Integrating robust and high-performing AI tools within cybersecurity frameworks is a priority for 
IT professionals, who prioritize functionality and performance over simplicity. 

 
By applying these strategies, organizations can boost AI adoption and fortify their cybersecurity posture. 
 
Limitations 
 
This study presents several limitations. First, using a non-probability convenience sampling method limits 
external validity due to the non-random selection of participants. As Andrade (2021) explains, convenience 
sampling draws participants from accessible sources; however, such samples may not accurately represent 
the broader population, thereby restricting generalizability. 
 
Additionally, this study relied on an opt-in panel for data collection, which introduces the potential for 
measurement errors due to participant misreporting (Bailey & Brick, 2024). Opt-in panel respondents may 
provide inaccurate responses intentionally to qualify for additional surveys or unintentionally due to survey 
fatigue. These factors can affect data accuracy and introduce response bias (Bailey & Brick, 2024). 
 
This study’s sample was collected using SurveyMonkey’s Audience feature, which operates as an opt-in 
panel by recruiting self-selected participants. Although this panel provided access to IT professionals in the 
United States, its self-selected nature introduces selection bias, as participants voluntarily join rather than 
being randomly chosen (Bailey & Brick, 2024). While weighting adjustments can sometimes mitigate these 
biases, their effectiveness depends on strong assumptions about the underlying population (Bailey & Brick, 
2024). 
 
Finally, while the final sample size of 120 participants exceeds the minimum threshold for factor analysis, 
its relatively homogeneous composition and geographic limitation may restrict the generalizability of the 
findings. Andrade (2021) suggests that future research should focus on increasing sample size and 
enhancing diversity to improve overall validity and broaden applicability. 
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Recommendations for future research 
 
Future research should investigate the long-term effects of AI-driven patch management on an 
organization's cybersecurity posture. Specifically, studies should examine how AI enhances vulnerability 
assessment by improving the rapid identification, prioritization, and remediation of vulnerabilities across 
diverse IT environments (Goswami, 2019). Additionally, research should investigate the adoption of AI 
within managerial decision-making processes, focusing on the factors that influence its acceptance and 
integration. Marocco et al. (2024) highlight that organizational readiness, ethical considerations, and 
managerial perceptions play a critical role in AI adoption, emphasizing the need for trust, transparency, and 
alignment with existing decision-making structures. Understanding these factors would provide a more 
comprehensive view of AI adoption challenges and opportunities. 
 
Future studies should also investigate effective user training methods to facilitate the implementation of AI. 
Palade and Carutasu (2021) propose a six-factor AI readiness model encompassing resource, cultural, 
strategic, IT, partnership, and cognitive readiness. Integrating these readiness factors into training programs 
could enhance decision-making, promote AI ethics, strengthen management support, and increase 
stakeholder engagement. Developing tailored training programs that address these factors may improve 
user attitudes and encourage the widespread adoption of AI-driven patch management systems. 
 
Moreover, future research should develop robust metrics and frameworks to assess the effectiveness of AI-
driven patch management. Dissanayake et al. (2022) emphasize the need for evaluation frameworks that 
measure technical performance and organizational impacts, including operational efficiency and enhanced 
security posture. Similarly, Wen et al. (2024) emphasize the importance of integrating AI into security 
assurance frameworks to ensure compliance with evolving regulatory standards, thereby enhancing the 
transparency and interpretability of AI-driven security models. Future studies should investigate methods 
for adapting these security assurance frameworks to diverse IT environments, particularly in complex 
infrastructures that require real-time threat mitigation. 
 
Finally, research should investigate how scalable and adaptable AI frameworks, such as those proposed by 
Kansal and Prasad (2024), can enhance cybersecurity resilience across diverse organizational 
infrastructures. As AI-driven security solutions evolve, developing scalable implementation strategies will 
ensure sustainable, long-term advancements in cybersecurity. 
 

Conclusion 
 
This study investigated IT professionals' perceptions of AI-driven patch management systems in enterprise 
IT environments, utilizing the Technology Acceptance Model (TAM). The findings indicate that attitude 
toward use (ATU) is the strongest predictor of adoption (B = 0.652, p < .001), highlighting the critical role 
of user perceptions in AI adoption. Perceived usefulness (PU) also significantly influences behavioral 
intention (BI) (B = 0.263, p = .008), reinforcing the importance of effectively communicating AI’s 
operational benefits. However, perceived ease of use (PEOU) was not a significant predictor (B = 0.125, p 
= .064), suggesting that IT professionals prioritize functionality over usability when evaluating AI-driven 
security solutions. 
 
These findings underscore the importance of cultivating positive user attitudes when implementing AI-
driven patch management through strategic communication, targeted training, and transparent AI decision-
making processes. Simply improving ease of use may not drive adoption; organizations must demonstrate 
AI's effectiveness in reducing workloads, enhancing security, and optimizing operational efficiency to build 
trust and encourage widespread adoption. 
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This study contributes to the growing body of research on AI adoption in cybersecurity by validating the 
applicability of TAM in enterprise IT settings. The model's high explanatory power (R² = 0.828) 
underscores its relevance in understanding BI within cybersecurity, particularly regarding AI-driven 
automation tools. 
 
Future research should investigate the long-term effects of AI-driven patch management, including its 
sustained efficacy in mitigating security risks and its impact on overall cybersecurity resilience. 
Additionally, studies should examine organizational readiness and managerial perceptions to understand 
better the barriers and facilitators of AI adoption across diverse IT environments. 
 
Ultimately, the successful adoption of AI-driven patch management solutions requires a user-centric 
approach that fosters trust and engagement and communicates the tangible benefits of AI. By addressing 
these factors, organizations can maximize adoption rates, strengthen cybersecurity resilience, and ensure a 
proactive defense against evolving cyber threats. 
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Appendix 
 

Survey Instrument 
 

The following survey items assessed IT professionals' perceptions of AI-driven patch management 
systems. These items are based on the Technology Acceptance Model (TAM) and adapted from Davis 
(1989). 
 
Perceived Usefulness (PU) 
 

1. Using an AI-driven patch management system would enhance my job performance. 
2. AI-driven patch management systems would improve the overall security of the IT environment. 
3. AI-driven patch management systems would simplify the process of identifying and prioritizing 

vulnerabilities. 
4. AI-driven patch management systems would allow me to spend more time on strategic tasks by 

reducing time spent on manual patching. 
 
Perceived Ease of Use (PEOU) 
 

5. I believe learning to use an AI-driven patch management system would be straightforward. 
6. Integrating an AI-driven patch management system into existing workflows would be easy. 
7. I expect that using an AI-driven patch management system would not require significant effort. 
8. I anticipate that AI-driven patch management systems would be intuitive for IT professionals to 

use. 
 
Attitude Toward Use (ATU) 
 

9. I feel positively about our organization's potential use of AI-driven patch management. 
10. I am confident that AI-driven patch management systems could significantly benefit our 

cybersecurity efforts. 
11. I am enthusiastic about adopting AI-driven technology for managing security patches. 
12. I believe that AI-driven patch management systems represent an innovative solution to 

cybersecurity challenges. 
 
Behavioral Intention (BI) 
 

13. I intend to use an AI-driven patch management system if it becomes available in my organization. 
14. I would actively support the adoption of AI-driven patch management systems within my 

organization. 
15. I would be open to replacing traditional patch management methods with AI-driven systems in 

the near future. 


