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Abstract 

Enhancing routing and forwarding in Ethernet/IP networks using modern machine learning addresses 
critical challenges in modern network environments. This systematic literature review examines recent 
advancements in applying machine learning techniques to improve network performance and adaptability. 
Analyzing methodologies such as neural networks and deep reinforcement learning, the study highlights 
their impact on routing efficiency and scalability. Key challenges, including computational complexity and 
integration with existing infrastructures, are identified. The review synthesizes findings from various 
studies, offering insights into practical applications and future research directions. This work contributes 
to the field by providing a comprehensive understanding of how machine learning enhances routing and 
forwarding in Ethernet/IP networks, informing academic research and industry practices. 

Keywords: Ethernet/IP networks, machine learning in network routing, deep reinforcement learning for 
Ethernet/IP networks, forwarding algorithms, neural networks in routing algorithms, deep reinforcement 
learning. 

Introduction 

Routing and forwarding in Ethernet/IP networks face significant challenges in modern networking. 
Increasing data traffic and dynamic network conditions demand more intelligent and adaptive routing 
solutions. Traditional algorithms lack scalability and fail to adapt to real-time changes effectively (Gilsdorf 
& Brauer, 1999; Kojić et al., 2005, 2006). Integrating machine learning (ML) techniques to enhance 
routing and forwarding in Ethernet/IP networks offers promising avenues to overcome these limitations. 
While earlier research, such as Rauch and Winarske’s (1988) work on using neural networks (NNs) to 
determine optimal routing paths, laid a foundational understanding of ML’s role in network optimization, 
modern technological advancements such as high-performance parallel computing offer new opportunities 
to enhance these systems further. 

Problem statement 

Ethernet/IP networks require efficient routing and forwarding to handle growing complexity and dynamic 
conditions.  Traditional methods fail to meet scalability and real-time decision-making requirements 
(Gilsdorf & Brauer, 1999; Kojić et al., 2005, 2006). ML techniques, including neural networks and 
deep reinforcement learning, offer the potential to enhance the efficiency of these algorithms. However, 
these techniques’ practical application and effectiveness in real-time Ethernet/IP environments remain 
insufficiently understood. 

Purpose of the study 

This study conducts a narrative literature review to determine the validity of ML as a solution, assessing 
the current research on enhancing routing and forwarding in Ethernet/IP networks, analyzing current 
methodologies, and identifying challenges to validate the effectiveness of these techniques. The analysis of 
the literature will offer insights into future developments and practical applications, enabling the researcher 
to address the following question. 

mailto:paul.tatum@mga.edu
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Research question 

What key findings emerge from the literature regarding using machine learning to enhance routing and 
forwarding in Ethernet/IP networks? 

Research objectives 

The primary objectives of this research focus on analyzing the current state of ML techniques in network 
routing and forwarding. The research seeks to identify key challenges and limitations associated with 
implementing these techniques within Ethernet/IP networks, highlighting potential barriers to adoption. To 
establish an understanding of current network routing and forwarding ML solutions, a comprehensive 
literature review will synthesize significant findings, providing a cohesive overview of existing knowledge 
and insights. Based on these analyses, the research will conclude by recommending future directions and 
practical strategies for further exploration and application. 

Review of the literature 

ML integration into Ethernet/IP network routing addresses significant challenges in dynamic and complex 
environments. The rapid growth of data traffic and the increasing complexity of network topologies demand 
intelligent routing solutions adapt in real-time. As a result, researchers explore how NNs leveraging deep 
reinforcement learning (DRL) enhance routing efficiency and network performance. This review focuses on 
key themes emerging from the literature, including early NN applications, traffic prediction methodologies, 
reinforcement learning (RL) integration, and generalization and scalability challenges. 

Early neural network applications in routing 

Early attempts applying ML to network routing demonstrated significant potential, laying the groundwork 
for later developments. Rauch and Winarske (1988) pioneered NNs in routing communication traffic, 
targeting reduced network delays through adaptive routing. Their findings highlighted NNs’ ability to adapt 
effectively to dynamic conditions and complex network topologies. Soon after, Ali and Kamoun (1993) 
employed Hopfield networks for shortest-path computations in packet-switched networks, emphasizing 
flexibility in managing changing network conditions and minimal path delays. To preserve the quality 
of transport networks, Gilsdorf and Brauer (1999) combined NNs with fuzzy logic to improve route 
assignments. 

Researchers increasingly recognized neural architectures’ value for real-time route selection, contributing 
to ongoing exploration and growth in this research area. Continued research expanded on early findings, 
applying NNs to complex routing computations and congestion management. Using NNs, Kojić et al. 
(2005) adjusted traffic flows adaptively to address symmetrical and non-symmetrical links. As a follow-up 
to this, Kojić et al. (2006) introduced a Hopfield-based method aimed at reducing packet loss and balancing 
link loads. 

Traffic prediction and congestion management 

Traffic prediction and the application of multipath routing and congestion management represent an 
evolving focus on enhancing network efficiency. Barabas et al. (2011) proposed a multipath routing 
framework based on NN-driven traffic prediction. By anticipating congestion and dynamically adjusting 
routes, Barabas et al.’s (2011) work demonstrated how predictive models could reduce network delays and 
enhance Quality of Service (QoS). Later, L. Xu et al. (2020) presented Active Buffer Queueing (ABQ), an 
approach for managing congestion within data center networks by directly adjusting packet flow at the 
switch level. Pham et al. (2019) employed DRL to implement QoS-assigned routing for latency-sensitive 
flows. Almasan, Xiao, et al. (2022) integrated WAN traffic optimization with DRL-trained models, 
dynamically reducing overhead during changing link states. Although focused on traffic prediction and 
congestion control, such research offers relevant insights into managing dynamic conditions in Ethernet/IP 
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networks. 

Reinforcement learning for adaptive routing 

The integration of DRL has emerged as a significant trend, with DRL models providing adaptive, intelligent 
routing in complex network scenarios. Valadarsky et al. (2017) addressed the challenges of implementing 
ML for network routing by proposing a DRL model tailored for adaptive routing. In their research, Stampa 
et al. (2017) examined the use of DRL agents, their adaptability to changing network traffic, and their ability 
to reduce network delays by autonomously adjusting routing configurations. Amin et al. (2021) surveyed 
supervised, unsupervised, and RL-based methods for Software-Defined Networking (SDN) routing and 
forwarding. Test observations indicated such ML-driven traffic optimization frameworks increased 
average throughput, though implementations require robust hardware acceleration to handle inference 
loads (Żotkiewicz et al., 2021). 

Continuing DRL research saw additional frameworks with advanced capabilities. Almasan, Suárez-Varela, 
et al. (2022), B. Chen et al. (2022), X. Xu et al. (2022), and He et al. (2024) explored DRL models integrated 
with Graph Neural Networks (GNNs), which combine topology learning and decision-making capabilities. 
Such models leverage GNNs to represent the network state, improving routing efficiency and scalability 
under fluctuating conditions. The ability of DRL to autonomously learn optimal routing strategies aligns 
with Ethernet/IP networks’ need for continuous adaptation to real-time changes. 

Security and data-driven assurance 

Security concerns emerged in ML-driven enhanced routing and forwarding. Bhavanasi et al. (2022) 
demonstrated how adversarial traffic patterns disrupted learning in multi-agent DRL, revealing how partial 
data—resulting from malicious flows manipulating queue levels—caused agent confusion. Additionally, 
attackers could exploit DRL training phases by injecting incorrect states, resulting in scenarios where agents 
might adopt suboptimal routes (Almasan, Suárez-Varela, et al., 2022). To address concerns, Amin et al. 
(2021) recommended secure data channels for training feedback, and Almasan, Suárez-Varela, et al. 
(2022) suggested robust anomaly detection to quarantine harmful data. Overall, research favored 
frameworks that maintained secure local models while exchanging summarized parameters, an approach 
that preserved privacy and accuracy (Y.-R. Chen et al., 2020; Tayeen et al., 2022). 

Scalability and resource challenges 

Implementing ML techniques, especially DRL, involves significant computational complexity. Amin 
et al. (2021) raised concerns regarding computational overhead during route calculations. As overhead 
complicated real-time responses, traditional protocols occasionally overshadowed ML solutions when 
hardware constraints limited feasible application at scale (Singh et al., 2021). B. Chen et al. (2022) 
explained complexity and overhead may hinder scalability across large, distributed networks. Addressing 
such scale demanded parallel computing resources, as indicated by Lupión et al. (2023), whose research 
revealed detailed HPC-type parallel computing neural architecture searches to speed ML model training. 
While parallelization accelerated training, applying HPC-based architectures and methodologies at scale 
for real-time decision-making in network routing and forwarding continued to pose difficulties. 

Despite advancements, challenges remain. The ability to generalize across diverse topologies remains a 
primary challenge. Almasan et al. (2021) and You et al. (2019) noted DRL models perform well on specific 
topologies but struggle with generalizing to unseen network configurations. Despite earlier research by 
Gilsdorf and Brauer (1999) pointing out complexities when merging neural-based algorithms with existing 
routing and forwarding methods, little has been accomplished since to overcome such complexities. Partial 
observability of network states and the need for compatibility with legacy infrastructure present practical 
barriers to deploying ML-based solutions effectively (Almasan et al., 2021). 



5  

Methodology 

This study adopted a qualitative, narrative literature review approach to examine ML-based enhancements 
to routing and forwarding in Ethernet/IP networks. Kitchenham and Charters (2007) established guidelines 
that structure the review process and promoted thorough examination of relevant publications. The 
systematic methodology collected, analyzed, and interpreted existing evidence regarding routing and 
forwarding improvements under ML paradigms. This approach supported a comprehensive investigation 
of prior research on NNs, DRL, and other ML methods. 

Defining the approach 

The decision to pursue a systematic review rather than an empirical study was driven by several 
considerations. First, the inherent complexity and multifaceted nature of ML applications, encompassing 
NNs, DRL, and other emerging techniques, necessitates an approach capable of synthesizing diverse 
findings from a wide array of studies. This comprehensive synthesis unifies disparate methodologies and 
results, highlighting critical challenges such as computational complexity, scalability, and interoperability 
constraints, which might be overlooked in a single empirical investigation. By reviewing existing literature, 
the study identifies research gaps and future directions. Due to the continuous development of ML 
techniques and Ethernet/IP network technologies, employing a systematic review proves a resource-
efficient and feasible alternative to initiating new experimental studies. Finally, the use of a rigorous, 
transparent protocol ensures data collection and analysis remain methodologically sound and reproducible, 
minimizing bias and enhancing the validity of the conclusions. 

Planning and conducting the review 

The relevance of Kitchenham and Charters’ (2007) work provided the foundation on which the protocol 
that guided the entire review was based. The protocol described the research question, search strategy, 
inclusion and exclusion criteria, and data extraction procedures. The question targeted ML-based 
enhancements to routing and forwarding in Ethernet/IP networks, focusing on demonstrated efficiency and 
scalability. A complement to the employed protocol saw a typology derived from the work of Grant and 
Booth (2009) that clarified the review approach, which centered on the critical appraisal of findings from 
relevant sources. 

A structured plan that targeted publications released within the past decade was adhered to for this 
study. IEEE Xplore, ACM Digital Library, ScienceDirect, ResearchGate, and Semantic Scholar served as 
search venues. Queries included “machine learning in network routing,” “deep reinforcement learning for 
Ethernet/IP networks,” and “neural networks in routing algorithms.” These terms aligned with the focus on 
NN-based techniques that address scalability, congestion management, and real-time decision-making in 
complex network environments. 

Selection of primary studies and quality assessment 

Inclusion criteria favored articles that clearly examined ML-based routing or forwarding within Ethernet/IP 
networks. Studies that presented empirical evidence or simulations demonstrating improved routing 
performance received the highest priority. Studies that addressed unrelated protocols or theoretical 
proposals without experimental results were excluded. This practice produced a concise set of publications 
for further examination and analysis. 

Each publication was evaluated on methodological soundness, clarity of objectives, and strength of findings. 
That process drew on guidelines from Kitchenham and Charters (2007) along with additional best practices 
from Templier and Paré (2015). Each study received a quality rating based on transparency in data collection 
and thoroughness in analysis. Hazzan et al. (2006) highlighted qualitative research criteria that guided 
additional scrutiny regarding validity and trustworthiness. 
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Data extraction and thematic synthesis 

The data extraction phase focused on identifying recurring themes, challenges, and contributions across 
studies. Following methodologies outlined by Hazzan et al. (2006), Grant and Booth (2009), and Templier 
and Paré (2015), thematic coding was applied iteratively to extract insights related to computational 
complexity, scalability, adaptability, and performance enhancements. The extracted data were categorized 
into predefined themes, with emerging themes identified through an open-coding process. 

The thematic synthesis process followed an inductive approach to generate overarching patterns from the 
collected studies. Studies were compared and contrasted based on methodologies, objectives, and reported 
outcomes. Each study was reviewed, and key phrases or concepts were highlighted and assigned preliminary 
codes. Recurring patterns and relationships among codes were identified, allowing for broader theme 
categorization. Themes were refined and structured based on their relevance to applications in network 
routing and forwarding. Finally, a narrative synthesis was developed, presenting a comprehensive view of 
how machine learning enhances routing and forwarding performance in Ethernet/IP networks. 

Analysis 

Selection of primary studies 

Following the inclusion and exclusion criteria discussed in the methodology, twenty-seven peer-reviewed 
studies were chosen based on their focus on ML-driven routing or forwarding strategies in Ethernet/IP 
or closely related IP-based networks. To qualify, each study provided simulation or empirical evidence of 
enhanced routing or forwarding under ML-based methods or offered significant insights into ML 
approaches (e.g., DRL, NNs) that could be applied in Ethernet/IP contexts. 

Studies focusing exclusively on unrelated protocols or presenting purely theoretical proposals without 
simulation or real-world testing were excluded. Table 1 summarizes the final set of publications, including 
each paper’s main objective, ML techniques, and overall contribution to Ethernet/IP network routing and 
forwarding. 

Table 1: Overview of selected studies 
 

Study/Studies Objective ML Technique(s) Primary Contribution 

Almasan et al. 
(2021) 

 
Almasan, 
Suárez-Varela, et al. 
(2022) and Almasan, 
Xiao, et al. (2022) 

Investigate ML-based 
solutions for real-time, 
dynamic routing 
Ensure QoS with DRL + 
GNN; address real-time WAN 
routing 

DRL Highlights potential for 
real-time ML-driven routing 

 
DRL, GNN GNN-DRL approach for 

WAN routing, QoS 

Amin et al. (2021) Survey ML in SDN routing 
(supervised, unsupervised, 
RL) 

Supervised, 
Unsupervised, RL 

Comprehensive classification 
of ML for SDN routing 

Barabas et al. (2011) Develop NN-based multipath 
routing framework with traffic 
prediction 

Neural Networks Predictive routing, improves 
QoS 

Bhavanasi et al. 
(2022) 

Investigate ML to automate 
network routing with 
multi-agent learning 

Graph Convolutional 
Networks, RL 

Routing that addresses 
dynamic conditions without 
retraining 

Y.-R. Chen et al. 
(2020) 

Introduce a DRL agent for 
SDN routing 

DRL DRL approach for minimizing 
network delay in SDN 

Continued on next page 
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Table 1: Overview of selected studies (Continued from previous page) 
 

Study/Studies Objective ML Technique(s) Primary Contribution 

B. Chen et al. (2022) Combine GNN & DRL for 
auto-generation of routing 
policies 

GNN, DRL Improved end-to-end delay, 
robust to topology changes 

Fang et al. (2019) Apply Q-learning & Deep 
Q-learning to SDN routing 

RL, Deep 
Q-Learning 

RL-based routing algorithm 
for SDN 

He et al. (2024) Develop MPDRL using 
GNN for dynamic routing 
under Knowledge-Defined 
Networking 

DRL, GNN Enhanced link utilization, 
load balancing in dynamic 
networks 

Kojić et al. (2005, 
2006) 

Propose Hopfield NN-based 
routing for packet-switched 
networks 

Hopfield Neural 
Network 

Optimization approach 
balancing shortest path, traffic 
constraints 

Liu et al. (2021) Classify ML-based online 
routing for multi-QoS in SDN 

 

Lupión et al. (2023) Automate NN design via 
meta-heuristics & HPC for 
specialized tasks 

Supervised, 
Unsupervised, DRL 
 

Parallel NN 
architecture search 

Comprehensive approach for 
multi-type traffic flows 
 

Accelerates neural 
architecture design; relevant 
to routing tasks 

Obukhov and 
Krasnyanskiy (2020) 

Automate data forwarding 
decisions in Adaptive 
Information Systems 

Neural Networks Minimizes execution time for 
forwarding tasks 

 

Pham et al. (2019) Use DRL to improve 
QoS routing in 
Knowledge-Defined 
Networking 

Singh et al. (2021) Propose Trailnet for 
DRL-based forwarding table 
replacement 

Stampa et al. (2017) Develop DRL agent for 
adaptive SDN routing 

 

DRL Boosts multi-flow, 
QoS-constrained routing 
performance 

 
DRL ANN-based forwarding, 

reduces large table reliance 
 

DRL Reduces network latency 
through automated traffic 
engineering 

Tayeen et al. (2022) Evaluate independent 
Q-learning for packet 
forwarding in ISP-scale 
networks 

Multi-agent RL 
(IQL) 

Multi-agent RL approach for 
large-scale forwarding 

Valadarsky et al. 
(2017) 

Explore data-driven routing 
with DRL 

DRL Early demonstration of 
data-driven routing viability 

L. Xu et al. (2020) Develop real-time congestion 
control in data center 
networks 

X. Xu et al. (2022) Optimize network routing 
with GNN-based DRL under 
topology changes 

ABQ Proposes switch-level 
adjustments to packet flow, 
improving throughput, 
lowering latency 

GNN, DRL Introduces GRL-NET for 
adaptive routing 

You et al. (2019) Multi-agent distributed 
routing with LSTM-based 
DRL 

Multi-agent DRL, 
LSTM RNN 

Balances shortest paths, 
congestion avoidance 

Żotkiewicz et al. 
(2021) 

AI logic for intent-based 
routing in SDN 

Deep Q-Learning, 
ANN 

Resource allocation approach 
ensuring QoS in next-gen 
networks 
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Quality assessment 

To assess the methodological rigor of each source, criteria recommended by Kitchenham and Charters 
(2007) and Templier and Paré (2015) was applied, examining each study for methodological soundness 
(whether robust experimental or simulation methods were employed and results presented transparently), 
clarity of objectives (clearly stated goals or research questions), transparency in data collection and analysis 
(level of detail provided about data sets, tools, reproducibility, or simulation environments), and strength 
and applicability of findings (alignment of conclusions with empirical results and relevance to Ethernet/IP 
scenarios). 

Table 2 synthesizes the assessments using a qualitative scale of Low, Medium, or High. Most studies were 
rated Medium or High, indicating generally robust methods and clear objectives, but varying degrees of 
real-world validation. 

Table 2: Quality assessment of primary studies 
 

 

Study Methodological 
Soundness 

Clarity of 
Objectives 

Transparency 
in Data 

Strength of 
Findings 

Overall 

 

Almasan et al. (2021) High High Medium High High 
Almasan et al. (2022) High High High High High 
Amin et al. (2021) High High Medium Medium Med-High 
Barabas et al. (2011) High High Medium High High 
Bhavanasi et al. 
(2022) 

Medium High Medium Medium Medium 

Chen et al. (2020) High High Medium High High 
Chen et al. (2022) High High High High High 
Fang et al. (2019) Medium Medium Medium Medium Medium 
He et al. (2024) High High Medium High High 
Kojić et al. (2005) Medium High Medium Medium Medium 
Kojić et al. (2006) Medium Medium Medium Medium Medium 
Liu et al. (2021) High High     Medium      Medium    Med-High 
Lupión et al. (2023)   Medium     High      Medium     Medium     Medium 
Obukhov & 
Krasnyanskiy (2020) 

Medium High Medium Medium Medium 

Pham et al. (2019) High High Medium High High 
Singh et al. (2021) High High Medium High High 
Stampa et al. (2017) High High Medium High High 
Tayeen et al. (2022) Medium Medium Low Medium Med-Low 
Valadarsky et al. 
(2017) 

Medium Medium Medium Medium Medium 

You et al. (2019) High High Medium High High 
Żotkiewicz et al. 
(2021) 

High High Medium High High 

 

Data extraction 

In line with Hazzan et al. (2006) and Templier and Paré (2015), data extraction targeted computational 
complexity (algorithmic overhead, hardware requirements), scalability and adaptability (support for 
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large-scale or real-time changes), performance enhancements (reduced latency, higher throughput, better 
QoS), and key challenges (partial observability, overhead, integration barriers). Open-coding identified 
recurring patterns and relationships. Table 3 offers illustrative examples of how codes were assigned. 

Table 3: Example of data extraction and coding 
 

Study Key Concepts Codes 

Almasan et al. (2022) DRL + GNN approach for QoS and SLA compliance; 
robust, scalable operation. 

Barabas et al. (2011) Multipath routing with NN-based prediction for 
congestion avoidance. 

Scalability, QoS, GNN, 
DRL 
Predictive Routing, 
Congestion Management, 
QoS 

Chen et al. (2022) AutoGNN for adaptive topology changes; DRL-based. Topology Adaptability, 
GNN, DRL 

Singh et al. (2021) ANN to replace IP forwarding tables, reduce latency. Forwarding Table 
Replacement, Latency 
Reduction, ANN 

Pham et al. (2019) DRL for QoS-aware multi-flow routing; improved 
performance. 

QoS, Multi-flow, DRL 

Tayeen et al. (2022) Independent Q-Learning for ISP-scale forwarding. Multi-agent, Scalability, 
Independent Q-Learning 

 

Results 

Thematic synthesis 

Synthesizing these codes via an inductive approach yielded four major themes: (1) Real-time adaptability—
many studies demonstrated an emphasis on adaptive and online decision-making to accommodate 
fluctuating traffic volumes (Almasan et al., 2021; Stampa et al., 2017), with approaches leveraging DRL 
agents showing particular promise for continuous route updates under dynamic conditions; (2) Topology 
awareness via GNNs—GNNs significantly enhance generalization and scalability (Almasan, Suárez-Varela, 
et al., 2022; B. Chen et al., 2022), allowing routing solutions to handle variations in network architectures 
more gracefully than traditional fully connected or convolutional architectures; (3) Predictive and proactive 
routing—several works (Barabas et al., 2011; Pham et al., 2019) deployed NNs for forecasting traffic 
congestion or queue lengths, enabling proactive route selection before bottlenecks arise, resulting in 
improved QoS and reduced latency; and (4) Scalability and complexity barriers—while ML-driven routing 
exhibits strong potential, researchers frequently highlight computational overhead and training complexity 
as obstacles (Amin et al., 2021; B. Chen et al., 2022), since large-scale Ethernet/IP networks can pose high 
demands on memory, compute resources, and real-time inference speeds. 

Interpretation of findings 

Overall, the synthesis confirms the efficacy of ML-based techniques for enhancing routing in Ethernet/IP 
networks by providing adaptive routing, where agents respond to congestion and topology changes in real 
or near-real time; predictive control, where NNs forecast traffic trends to enable proactive rerouting; and 
scalability with cautions, as GNN-based models scale better to larger network topologies, although training 
overhead remains a bottleneck. As such, the selected literature provides strong evidence ML—especially 
DRL combined with GNNs—can significantly improve routing and forwarding in Ethernet/IP networks 
when carefully implemented. Even so, further investigations into hardware acceleration, more efficient 
training mechanisms, and real-world validations are necessary to establish these approaches as real-world 
solutions and implementations. 
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Discussion of findings 

The findings reveal a variety of outcomes regarding techniques for improving Ethernet/IP routing and 
forwarding. Multiple studies (Almasan et al., 2021; Amin et al., 2021; B. Chen et al., 2022) share a central 
observation that methods are suitable for scenarios where dynamic traffic conditions require continuous and 
efficient decision-making. Several core themes emerge from those studies. One central theme is real-time 
adaptability, which refers to routing frameworks that adjust forwarding paths almost instantly in response 
to new congestion data or shifting flow patterns. Work by Stampa et al. (2017) and Valadarsky et al. (2017) 
exemplifies this, demonstrating agents can autonomously identify routes that provide greater throughput 
and reduce overall latency. 

Another essential discovery involves applications of NNs, including GNNs. These structures offer richer 
representations of network topologies, replacing older approaches reliant on standard feedforward or 
convolutional neural network models. GNNs capture link relationships in detail, aiding the model’s 
capacity to operate on unseen topologies (Almasan, Suárez-Varela, et al., 2022; B. Chen et al., 2022). The 
capacity to generalize—crucial for Ethernet/IP networks—as operators frequently upgrade infrastructures 
or switch to new configurations that differ from training conditions. When GNN modules join with DRL, 
researchers have shown promising outcomes in controlling route assignments even when incoming traffic 
volumes fluctuate. In addition, proactive routing frameworks (Barabas et al., 2011; Pham et al., 2019) offer 
early identification of possible congestion hotspots, supporting decisions that preempt bottlenecks and 
distribute loads effectively. 

The review also reveals certain persistent impediments. Some research sources (Amin et al., 2021; Kojić 
et al., 2006) indicate complex overhead and hardware constraints still slow widespread adoption, especially 
when real-time inference at large scale is necessary. Others (Lupión et al., 2023) emphasize parallel 
computing can mitigate training delays, although inference complexity in production environments might 
still be substantial. Another recurring issue is partial observability, where local routing and forwarding 
platforms have incomplete data regarding global network states. Such gaps reduce the accuracy of 
predictions or route decisions, especially in multi-agent designs that attempt to coordinate decisions across 
multiple nodes. Security concerns add an extra challenge, as deceptive traffic patterns can derail training 
or manipulate congestion signals (Bhavanasi et al., 2022). Collectively, these findings point to meaningful 
progress yet highlight persistent barriers to be addressed before large-scale commercial deployment is fully 
achieved. 

Implication of findings 

The studies analyzed in this review signify that data-driven models, including RL and DRL methods, hold 
promise for optimizing Ethernet/IP routing and forwarding. As traffic grows and becomes more 
unpredictable, the requirement for automated solutions at scale increases (Almasan, Xiao, et al., 2022). 
Adaptive agents based on DRL exhibit robust performance when altering forwarding rules based on 
real-time measurements, showing clear potential for network operators responsible for mission-critical 
services. Traditional routing paradigms grounded in static or heuristic approaches may be unable to 
accommodate bursts of traffic or sudden link failures with the same level of efficiency (B. Chen et al., 
2022). 

In addition, GNN-enhanced DRL stands out for its capacity to process changing network topologies. 
This approach permits a universal, topology-agnostic framework that can adjust if links are added or 
removed (B. Chen et al., 2022). In practical contexts, that adaptability aligns with the reality of networks 
where expansions, device substitutions, and reconfigurations are common. Operators might integrate GNN-
DRL agents to handle route decisions without continuously redesigning ML models each time a node is 
decommissioned or newly installed. This lowers the operational burden associated with repeated retraining 
phases (Obukhov & Krasnyanskiy, 2020). 

Despite these possibilities, multiple aspects will govern how far these findings influence real-world 
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Ethernet/IP networks. For example, hardware overhead emerges when many routers or switches need 
inference capabilities. While specialized hardware such as GPUs can reduce processing time, the 
deployment costs may be formidable for smaller organizations (Almasan, Suárez-Varela, et al., 2022). 
Some investigations (Singh et al., 2021) suggest that table replacement via NNs is appealing only when a 
strong match exists between hardware constraints and system objectives. 

The security implications cannot be overlooked. Adversarial manipulation can distort traffic features, 
mislead agents, and result in inefficient routing decisions (Bhavanasi et al., 2022). Researchers have 
suggested robust anomaly detection and parameter exchange frameworks (Almasan, Suárez-Varela, et al., 
2022; Tayeen et al., 2022) to help counter these risks, but additional research is needed to refine these 
protective measures. While the evidence indicates that RL and DRL solutions improve adaptability and 
predictive control, so exists the demand to strike a careful balance between performance gains and exposure 
to security vulnerabilities. 

Conclusion 

Limitations of the study 

This study adopted a narrative review structure guided by works such as Kitchenham and Charters (2007), 
which means certain constraints may limit overall generalizability. Many of the original research articles 
rely on simulation-based experiments, as opposed to real-world implementations. Although simulation 
helps explore routing strategies at scale, simulation alone cannot fully reflect the influence of hardware 
limitations, manufacturing variations, or environmental conditions that might occur in live Ethernet/IP 
networks (Amin et al., 2021; Fang et al., 2019). Consequently, real-world factors such as abnormal network 
events, rogue traffic patterns, and external hardware failures may produce unexpected results outside the 
scope of simulation. 

Additionally, there exists an inherent challenge in comparing papers that differ in objectives, metrics, or 
testbed environments presents an inherent challenge. Various authors define throughput, latency, or 
congestion indicators differently, complicating direct comparisons. The field would benefit from 
standardized definitions and consistent methods for performance measurement. Without consistent 
benchmarks or uniform datasets, the relative gains reported in isolated experiments may be less 
straightforward to interpret across different platforms (Templier and Paré, 2015). 

Another point to highlight concerns the limited body of large-scale, field-deployed analyses. While certain 
studies incorporate mid-size topologies or advanced parallelized training pipelines, wide-scale 
experimentation in an operational setting remains sparse (Y.-R. Chen et al., 2020). This means potential 
bottlenecks—such as resource contention on shared infrastructure or dynamic interactions across multiple 
administrative domains—might not be captured thoroughly. As a result, real deployments could demand 
more robust fallback mechanisms and validated modeling for partial observability than what is addressed 
in the literature surveyed. 

The selection of publications for review potentially introduces its own biases. The focus on articles that 
present empirical or simulated data about solutions for Ethernet/IP routing could overlook conceptual 
studies or methods that have been tested only on proprietary platforms. While the intent was to emphasize 
reproducible findings, it remains possible certain in-house industrial developments or private standards were 
not fully covered. 

Recommendations for future research 

Research pathways emerge from the analysis of challenges and gaps highlighted by this review. One 
direction relates to cross-topology generalization, an issue repeatedly cited in GNN-based studies 
(Almasan, Suárez-Varela, et al., 2022; B. Chen et al., 2022; He et al., 2024; X. Xu et al., 2022). While 
some initial outcomes (Almasan, Suárez-Varela, et al., 2022; B. Chen et al., 2022) show GNNs learn robust 
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policies for multiple networks, more systematic validations in larger, heterogeneous topologies would clarify 
how consistently these models perform as network sizes grow or node and link properties vary. Collaborative 
research efforts aimed at curating openly shared topological datasets, along with standardized evaluation 
protocols, could reduce fragmentation among competing methods. 

Another open question is real-world validation at a greater scale. Although parallelized training reduces 
overhead for preparing advanced models (Lupión et al., 2023), operational networks still require near-
instant inference and stable responses to link failures. Exploration of hardware accelerators embedded in 
routers or switches could potentially address these latency demands, but thorough cost-benefit analyses 
would be needed. Controlled pilots on production networks with mid-range scales might offer insight into 
how ML-based routing and forwarding copes with abrupt surges in traffic flows, legitimate or malicious. 
Comprehensive defenses against adversarial patterns also demand further attention, supported by the 
concerns of Bhavanasi et al. (2022). 

Finally, interdisciplinary collaboration across distributed systems and network operations stands to improve 
the reliability and interpretability of ML-driven routing and forwarding approaches. Possibly, some 
advanced neural models made available may act as “black boxes,” generating route decisions that can be 
hard to justify when traffic anomalies occur. Researchers could investigate model-agnostic explanation 
tools—originally conceived for image recognition—and adapt them for network route selection. Such efforts 
would equip operators with interpretive frameworks to examine routing proposals and detect unintended 
behaviors more quickly. Ensuring the explainability of real-time routing systems might raise trust among 
network operators who otherwise remain cautious about adopting complex algorithms without transparent 
rationales. 

These suggested research directions should help consolidate ongoing explorations of ML-based routing into 
unified frameworks. They would strengthen ties between academic research and industry practice, aligning 
theoretical concepts with practical operational needs. Over time, narrowing the gap between simulation 
results and reliable, secure real-world deployments will prove essential for further research and development 
of ML-enhanced Ethernet/IP routing and forwarding. 
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